Benutzer:Sneumann: Unterschied zwischen den Versionen

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen
(Die Seite wurde geleert.)
 
(60 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
  
 
 
´´Treppen auf Platten Beispiel 1 - Treppenhauses in einem mehrgeschossigen Wohnhaus Treppenlauf biegesteif Podest angeschlossen´´
 
 
= Aufgabenstellung =
 
Bild
 
 
 
Für den gegebenen Grundriss eines Treppenhauses in einem mehrgeschossigen Wohnhaus mit sechs Wohnungen soll eine gegenläufige Treppe Entworfen und Bemessen werden. Baustoffe, Umgebungsbedingungen und die Bauteilabmessungen wurden vorab festgelegt. Der Bauherr verzichtet auf ein besonderes maß des Schallschutzes. Als Treppenlauf Belag wurde ein Natursteinplattenbelag oberhalb und unterhalb wird die Treppe mit einem Gipsputz versehen. gewählt
 
Gewählt wurde eine Ausführung mit Arbeitsfuge
 
Die Podestplatten werden im Rahmen des Beispiels als einachsig gespannte platte betrachtet. Die Berechnung dient als Vergleich zu der Berechnung mit dem MB Modul
 
 
== Vorgaben ==
 
:{|
 
|-
 
| Geschosshöhe <math> h </math>: || 2,72m
 
|-
 
| Plattenstärke <math>  h_{L} </math>: || 20 cm
 
|-
 
| Natursteinplattenstärke <math> N_{s} </math>: || 6,0 cm
 
|-
 
| Gipsputz <math> G_{s} </math>: || 1,5 cm
 
|-
 
| Treppenform: || Gegenläufige Treppe
 
|-
 
| Expositionsklasse: || XC1 - trocken, ständig nass
 
|-
 
| Betonfestigkeitsklasse: || C25/30
 
|-
 
| Betonstahl: || B500
 
|}
 
 
 
= Anforderungen an Treppenkonstruktionen =
 
 
==geometrische Bestimmung==
 
 
zu Entwerfen ist eine Treppe für ein Treppenhauses in einem mehrgeschossigen Wohnhaus mit sechs Wohnungen
 
da die Treppe zu einem nicht zu ebener Erde liegende Geschoss führt spricht man von einer Baurechtlich notwendige Treppe
 
{| class="wikitable"
 
|+style="text-align:left;"|Grenzmaße <ref Name = "DIN18065" group="N" >DIN 18065:2015-03 Gebäudetreppen - Begriffe, Messregeln, Hauptmaße</ref>
 
|rowspan="3"|
 
|1
 
|2
 
|3
 
|4
 
|5
 
|6
 
|7
 
|-
 
!rowspan="2" style="background: #eaecf0;"|Gebäudeart
 
!rowspan="2" style="background: #eaecf0;"|Treppenart
 
!rowspan="2" style="background: #eaecf0;"|minimale nutzbare Laufbreite (b) [cm]
 
!colspan="2" style="background: #eaecf0;"|Steigung (s) [cm]
 
!colspan="2" style="background: #eaecf0;"|Auftritt (a) [cm]
 
|-
 
!style="background: #eaecf0;"|min.
 
!style="background: #eaecf0;"|max.
 
!style="background: #eaecf0;"|min.
 
!style="background: #eaecf0;"|max.
 
|-
 
|1
 
|rowspan="2" style="background: #FFFF40"|Gebäude im Allgemeinen (Fertigmaße im Endzustand)
 
|style="background: #FFFF40"|Baurechtlich notwendige Treppe
 
|style="background:#FFFF40"|100
 
|style="background:#FFFF40"|14
 
|style="background:#FFFF40"|19
 
|style="background:#FFFF40"|26
 
|style="background:#FFFF40"|37
 
|-
 
|2
 
|style="background: #eaecf0;"|Baurechtlich nicht notwendige (zusätzliche)
 
|50
 
|14
 
|21
 
|21
 
|37
 
|-
 
|3
 
|rowspan="2" style="background: #eaecf0;"|Wohngebäude mit bis zu zwei Wohnungen und innerhalb von Wohnungen
 
|style="background: #eaecf0;"|Baurechtlich notwendige Treppe
 
|80
 
|14
 
|20
 
|23
 
|37
 
|-
 
|4
 
|style="background: #eaecf0;"|Baurechtlich nicht notwendige (zusätzliche)
 
|50
 
|14
 
|21
 
|21
 
|37
 
|}
 
===minimale nutzbare Laufbreite <math>b</math>===
 
 
<br />
 
::<math> b \le \underline{100cm} </math>.
 
<br />
 
===Steigung <math>s</math>===
 
 
um die Geschosshöhe von 272 cm  zu überbrücken, wurde eine gegenläufige Treppe mit jeweils 8 Steigungen pro  Treppenlauf gewählt
 
::{|
 
|<math> s = \frac{h}{\text{Anzahl Steigungen}}= \frac{272cm}{16} = \underline{17cm} </math>
 
|-
 
|<math> 14cm \le \underline{s = 17} \le 19cm</math>
 
|}
 
=== Auftritt <math>a</math>===
 
 
::{|
 
| <math> a - s \approx 12cm </math> || <math> | +s </math>
 
|-
 
| <math> a \approx s + 12cm </math>||  <math>| mit: s= 17cm </math>
 
|-
 
| <math> a \approx 17cm + 12cm  </math>|| 
 
|-
 
| <math> a \approx 29cm  </math>||
 
|-
 
| <math> 26cm \le \underline{a=29cm} \le 37cm</math> ||
 
|}
 
===Überprüfung Schrittmaß===
 
 
::{|
 
| <math>  59cm \le 2 \cdot s + a \le 65cm </math> ||<math>| mit: s= 17cm  </math>
 
|-
 
| ||<math>| mit:a=29cm  </math>
 
|-
 
| <math>  59cm \le 2 \cdot 17cm + 29 \le 65cm </math>||
 
|-
 
| <math>  59cm \le \underline{63cm} \le 65cm </math>||
 
|}
 
===Treppenaugebreite <math> b^{'} </math>===
 
 
Es wird ein Treppenauge von 25 cm gewählt
 
::<math>20cm \le  b^{'} =25 \le 30cm </math>
 
* Steigungswinkel
 
 
::{|
 
| <math>  \alpha = tan^{-1} (\frac{s}{a})  </math>||<math>| mit: s= 17cm  </math>
 
|-
 
| ||<math>| mit:a=29cm  </math>
 
|-
 
| <math>  \alpha = tan^{-1} (\frac{17cm}{29cm})  </math> ||
 
|-
 
| <math>  \alpha \approx 30,38° </math> ||
 
|}
 
 
 
 
 
==Schallschutz==
 
Da der Bauherr keine privatrechtlichen Anforderungen gestellt hat. wird bei der  Planung lediglich das Mindestschallniveau nach DIN 4109 einzuhalten. Für die Konstruktion wird in dieser Treppe das typische beispiel für die Mindestanforderungen des Schallschutzes
 
 
Treppenlauf und Treppenpodest werden biegesteif miteinander verbunden. Die Treppenpodeste werden hierbei mit schwimmendem Estrich ausgestattet.Desweiteren wird der Lauf schalltechnisch mit einer Fugenplatte von den Wänden entkoppelt.
 
 
 
 
==Brandschutz==
 
es wird keine besondere Anforderungen an den Brandschutz gestellt daher reicht die Normale Betondeckung aus dem EC2.
 
 
 
= Lösung für den Treppenlauf =
 
 
==Einwirkungen==
 
===Teilsicherheiten ===
 
 
::{|
 
|<math> \gamma_\mathrm{Q} =1,50 </math> ||
 
|-
 
|<math> \gamma_\mathrm{G} =1,35 </math> ||
 
|}
 
=== Ständige===
 
Die ständigen Lasten werden auf den Grundriss bezogen.
 
 
:{|
 
| <math> g_{d}= g_{k} \cdot \gamma_\mathrm{G}</math> ||
 
|}
 
<br />
 
::{|
 
|<math>  g_{k} = g^{*}_{k} + g^{**}_{k} </math> ||
 
|}
 
<br />
 
:::{|
 
|<math>  g^{**}_{k} = \frac{s \cdot \gamma_{2}}{2} </math>|| <math>| mit: s= 17cm  </math>
 
|-
 
| || <math>| mit: \gamma_{2} = 24 \frac{kN}{m^{3}}  </math>
 
|-
 
| <math>  g^{**}_{k} = \frac{0,17m\cdot 24 \frac{kN}{m^{3}}}{2} </math>||
 
|-
 
| <math>  g^{**}_{k} = 2.04 \frac{kN}{m^{2}} </math>||
 
|}
 
<br />
 
:::{|
 
| <math>  g^{*}_{k} = \frac{ h \cdot \gamma_{1} + \gamma_{G_{s}=1,5 cm} + N_{s} \cdot \gamma_{Naturstein} }{cos(\alpha)} </math>||<math>| mit: h= 20cm  </math>
 
|-
 
| || <math>| mit: \gamma_{1}= 25 \frac{kN}{m^{3}} </math>
 
|-
 
| || <math>| mit: \gamma_{G_{s}=1,5 cm} = 0,18 \frac{kN}{m^{2}} </math>
 
|-
 
| || <math>| mit: \gamma_{Naturstein} = 0,3 \frac{\frac{kN}{m^{2}}}{cm} </math>
 
|-
 
| || <math>| mit: N_{s} = 6 cm </math>
 
|-
 
| || <math>| mit: \alpha = 30,38° </math>
 
|-
 
|<math>  g^{*}_{k} = \frac{ 0,20m \cdot 25 \frac{kN}{m^{3}} + 0,18 \frac{kN}{m^{2}}+ 6 cm \cdot 0,3 \frac{\frac{kN}{m^{2}}}{cm} }{cos(30,38°)} </math>||
 
|-
 
|<math>  g^{*}_{k} \approx 8,09 \frac{kN}{m^{2}} </math>||
 
|}
 
<br />
 
::{|
 
|<math>  g_{k} = g^{*}_{k} + g^{**}_{k} </math> ||<math>| mit: g^{*}_{k} = 8,09  \frac{kN}{m^{2}} </math>
 
|-
 
| || <math>| mit: g^{**}_{k} = 2.04 \frac{kN}{m^{2}} </math>
 
|-
 
|<math>  g_{k} = 8,09  \frac{kN}{m^{2}} + 2.04  \frac{kN}{m^{2}} </math> ||
 
|-
 
|<math>  g_{k} = 10,13 \frac{kN}{m^{2}} </math> ||
 
|}
 
<br />
 
:{|
 
| <math> g_{d}= g_{k} \cdot \gamma_\mathrm{G}</math> || <math>| mit: \gamma_\mathrm{G} = 1,5 </math>
 
|-
 
| || <math>| mit:g_{k} = 10,13 \frac{kN}{m^{2}} </math>
 
|-
 
| <math> g_{d}= 10,13 \frac{kN}{m^{2}} \cdot 1,5 </math> ||
 
|-
 
| <math> g_{d}=15,2 \frac{kN}{m^{2}}  </math> ||
 
|}
 
 
=== Veränderliche===
 
 
{| class="wikitable"
 
|+style="text-align:left;"|Lotrechte Nutzlasten für Treppen <ref Name = "HandbuchEC1" group="F">Handbuch Eurocode 1 Einwirkungen – Band 1 Grundlagen, Nutz- und Eigenlasten, Brandeinwirkungen, Schnee-, Wind-, Temperaturlasten Ausgabedatum: 06.2012 </ref>
 
|rowspan="2"|
 
|colspan="2"|1
 
|2
 
|3
 
|4
 
|5
 
|-
 
!colspan="2"|Kategorie
 
!Nutzung
 
!Beispiele
 
!<math> q_{k} [ \frac{kN}{m^{2}}] </math>
 
!<math> Q_{k} [kN] </math>
 
|-
 
|19
 
|rowspan="3" style="background:#FFFF40"|T
 
|style="background:#FFFF40"|T1
 
|rowspan="3" style="background:#FFFF40"|Treppen und Treppenpodeste
 
|style="background:#FFFF40"|Treppen und Treppenpodeste in Wohngebäuden, Bürogebäuden und von Arztpraxen ohne schweres Gerät
 
|style="background:#FFFF40"|3,0
 
|2,0
 
|-
 
|20
 
|T2
 
|alle Treppen und Treppenpodeste, die nicht in TI oder T3 eingeordnet werden können
 
|5,0
 
|2,0
 
|-
 
|21
 
|T3
 
|Zugänge und Treppen von Tribünen ohne feste Sitzplätze, die als Fluchtwege dienen
 
|7,5
 
|3,0
 
|}
 
 
::{|
 
|<math> \underline{ q_{k} = 3,0 \frac{kN}{m^{2}} } </math>||
 
|}
 
<br />
 
 
:{|
 
|<math> q_{d} =q_{k} \cdot \gamma_\mathrm{ Q } </math>|| <math>| mit: q_{k} = 3,0 \frac{kN}{m^{2}} </math>
 
|-
 
| || <math>| mit: \gamma_\mathrm{ Q } = 1,5 </math>
 
|-
 
|<math> q_{d} = 3,0 \frac{kN}{m^{2}} \cdot 1,5 </math>||
 
|-
 
|<math> q_{d} = 4,5 \frac{kN}{m^{2}} </math>||
 
|}
 
 
===Gesamtlasten===
 
 
:{|
 
| <math> f_{d}=g_{d}+q_{d} </math> || <math>| mit: q_{d} = 4,5 \frac{kN}{m^{2}}  </math>
 
|-
 
| || <math>| mit: g_{d}= 15,2 \frac{kN}{m^{2}}  </math>
 
|-
 
| <math> f_{d}=15,2 \frac{kN}{m^{2}} + 4,5 \frac{kN}{m^{2}} </math> ||
 
|-
 
| <math> f_{d}=19,7 \frac{kN}{m^{2}} </math> ||
 
|}
 
 
==Statisches System== 
 
:{|
 
| <math> l_{L}    = 8 \cdot a </math> || <math>| mit: a=29cm  </math>
 
|-
 
| <math> l_{L}    = 8 \cdot 29cm </math> ||
 
|-
 
| <math> l_{L}    = 2,32 m </math> ||
 
|}
 
 
 
 
 
[[Bild]]
 
 
==Schnittgrößen==
 
===maximales Feldmoment===
 
:{|
 
|<math> M_{Ed,F}  =f_{d} \cdot \frac{l_{L}^{2}}{8}</math>|| <math>| mit: f_{d}=19,7 \frac{kN}{m^{2}}  </math>
 
|-
 
| || <math>| mit: l_{L}    = 2,32 m </math>
 
|-
 
|<math> M_{Ed,F}  =19,7 \frac{kN}{m^{2}} \cdot \frac{2,32 m^{2}}{8}</math>||
 
|-
 
|<math> M_{Ed,F}  =13.25 \frac{kNm}{m} </math>||
 
|}
 
 
 
 
===Stützmoment===
 
:{|
 
|<math> M_{Ed,S}  =-f_{d} \cdot \frac{l_{L}^{2}}{16}</math>|| <math>| mit: f_{d}=19,7 \frac{kN}{m^{2}}  </math>
 
|-
 
| || <math>| mit: l_{L}    = 2,32 m </math>
 
|-
 
|<math> M_{Ed,S}  =-19,7 \frac{kN}{m^{2}} \cdot \frac{2,32 m^{2}}{16}</math>||
 
|-
 
|<math> M_{Ed,S}  =6.63 \frac{kNm}{m} </math>||
 
|}
 
 
===Auflagekraft===
 
:{|
 
| <math> C_{Ed}    =f_{d} \cdot \frac{l_{L}}{2} </math> || <math>| mit: f_{d}=19,7 \frac{kN}{m^{2}}  </math>
 
|-
 
| || <math>| mit: l_{L}    = 2,32 m </math>
 
|-
 
| <math> C_{Ed}    =19,7 \frac{kN}{m^{2}} \cdot \frac{ 2,32 m }{2} </math> ||
 
|-
 
| <math> C_{Ed}    =22.86 \frac{kN}{m} </math> ||
 
|}
 
 
=== Maximale Normalkraft===
 
 
:{|
 
| <math> extr n = \pm C_{Ed} \cdot sin(\alpha ) </math> || <math>| mit: \alpha = 30,38°  </math>
 
|-
 
| || <math>| mit: C_{Ed} = 22.86 \frac{kN}{m} </math>
 
|-
 
| <math> extr n = \pm 22.86 \frac{kN}{m} \cdot sin( 30,38° ) </math> ||
 
|-
 
| <math> extr n = \pm 11,56 \frac{kN}{m} </math> ||
 
|}
 
 
== Bemessung im Grenzzustand der Tragfähigkeit==
 
===Materialparameter===
 
 
::{|
 
| <math>  f_{cd} = \frac{ \alpha_{cc} \cdot f_{ck} }{ \gamma_{C} }  </math>||<math>| mit: \gamma_{C} = 1.5  </math>
 
|-
 
| || <math>| mit: \alpha_{cc} = 0.85 </math>
 
|-
 
| || <math>| mit: f_{ck}  = 25 \frac{kN}{cm^{2}} </math>
 
|-
 
| <math>  f_{cd} = \frac{  0.85  \cdot 25 \frac{kN}{cm^{2}}}{ 1.5 }  </math> ||
 
|-
 
| <math>  f_{cd} = 14,2 \frac{kN}{cm^{2}} </math> ||
 
|}
 
<br />
 
 
<br />
 
 
 
::{|
 
| <math>  f_{yd} = \frac{ f_{yk}}{\gamma_{s}}  </math>||<math>| mit: f_{yk} = 500 \frac{N}{mm^{2}}  </math>
 
|-
 
| || <math>| mit: \gamma_{s}  = 1.15 </math>
 
|-
 
| <math>  f_{yd} = \frac{ 50 \frac{kN}{cm^{2}}}{1,15}  </math>||
 
|-
 
| <math>  f_{yd} = 43,5 \frac{kN}{cm^{2}} </math>||
 
|}
 
 
 
===Biegebemessung===
 
 
====Feldbereich des Lauf´s====
 
=====Vorbemessung=====
 
::{|
 
| <math> z_{est} = 0,75 \cdot h  </math>||<math>| mit: h = h_{L} = 20 cm </math>
 
|-
 
| <math> z_{est} = 0,75 \cdot 20 cm </math>||
 
|-
 
| <math> z_{est} = 15 cm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> M_{Ed,est} = M_{Ed} - N_{Ed} \cdot z_{s1,est} </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: N_{Ed} = 0 </math>
 
|-
 
| ||<math>| mit: M_{Ed} = M_{Ed,F}  =13.25 \frac{kNm}{m}  </math>
 
|-
 
| <math> M_{Ed,est} = 13.25 \frac{kNm}{m}  - 0 kN \cdot 0,15 m </math>||
 
|-
 
| <math> M_{Ed,est} = 13.25 \frac{kNm}{m} </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> A_{s,est} = \frac{M_{Ed,est}}{z_{s1,est} \cdot f_{yd} } + \frac{N_{Ed}}{f_{yd}}  </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: f_{yd} = 43,5 \frac{kN}{cm^{2}} </math>
 
|-
 
| ||<math>| mit: N_{Ed} = 0 </math>
 
|-
 
| ||<math>| mit: M_{Ed,est} = 13.25 \frac{kNm}{m} </math>
 
|-
 
| <math> A_{s,est} = \frac{1325 \frac{kNcm}{m}}{15 cm \cdot 43,5 \frac{kN}{cm^{2}} } + \frac{0}{43,55 \frac{kN}{cm^{2}}}  </math>||
 
|-
 
| <math> A_{s,est} \approx 2,03 \frac{kNcm}{m}  </math>||
 
|}
 
 
gewählt: R257 ø7/15cm, <math>{{a}_{s}}= 2,57 \frac{cm^{2}}{m} </math>
 
 
 
 
=====Querschnittsgeometrie=====
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
C_{nom,dur}  \\
 
C_{nom,b,Bü} \\
 
C_{nom,b,L}
 
\end{cases}</math><br /><br />
 
 
<br />
 
::{|
 
| <math> C_{nom,dur} = C_{min,dur} +  \Delta C_{dev} </math>|| <math>| mit: C_{min,dur} = 10 mm </math> für XC1
 
|-
 
| || <math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,dur} = 10 mm +  10 mm </math>||
 
|-
 
| <math> C_{nom,dur} = 20 mm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> C_{nom,b,Bü} = C_{min,b,Bü} +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,Bü} = 0 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,b,Bü} = 0 mm  +  10 mm    </math>||
 
|-
 
| <math> C_{nom,b,Bü} = 10 mm    </math>||
 
|}
 
 
 
<br />
 
::{|
 
| <math> C_{nom,b,L} = C_{min,b,L} - \varnothing bue +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,L} = 7 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm  </math>
 
|-
 
| ||<math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| <math> C_{nom,b,L} = 7 mm  - 0 mm +  \Delta 10 mm    </math>||
 
|-
 
| <math> C_{nom,b,L} = 17 mm    </math>||
 
|}
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
20 mm  \\
 
10 mm  \\
 
17 mm
 
\end{cases}</math><br /><br />
 
 
::{|
 
| <math> d_{1} = c_{v} + \varnothing bue + \frac{\varnothing L}{2}</math>|| <math>| mit: c_{v} = 20 mm </math>
 
|-
 
| || <math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| || <math>| mit: \varnothing L = 7 mm </math>
 
|-
 
| <math> d_{1} = 20 mm  + 0 mm  + \frac{7 mm}{2} </math>||
 
|-
 
| <math> d_{1} = 23,5 mm</math>||
 
|}
 
 
::{|
 
| <math> d = h_{L} - d_{1} </math>|| <math>| mit: d_{1} = 27 mm </math>
 
|-
 
| || <math>| mit: h_{L} = 200 mm </math>
 
|-
 
| <math> d = 200 mm - 23,5 mm </math>||
 
|-
 
| <math> d = 176,5 mm \approx 17,6 cm </math>||
 
|}
 
 
 
 
=====Bemessung mit dem ω-Verfahren=====
 
 
::{|
 
|<math>  \mu_{Eds} = \frac{M_{Eds}}{b\cdot d^{2} \cdot  f_{cd}}    </math>|| <math>| mit: d = 17,6 cm  </math>
 
|-
 
| || <math>| mit: b = 100 cm </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}</math>
 
|-
 
| || <math>| mit: M_{Ed} = M_{Ed,F}  =1325 \frac{kNcm}{m}  </math>
 
|-
 
|<math>  \mu_{Eds} = \frac{ 1325 \frac{kNcm}{m} }{100 cm \cdot (17,6 cm)^{2} \cdot  1,42 \frac{kN}{cm^{2}} }    </math>||
 
|-
 
|<math>  \mu_{Eds} = 0,03012  </math>||
 
|}
 
<br />
 
 
<br />
 
 
::{|
 
|<math> \omega = \omega_{1} + \frac{ \omega_{2} - \omega_{1} } { \mu_{Eds,2} - \mu_{Eds,1}} \cdot ( \mu_{Eds} - \mu_{Eds,1} ) </math>||
 
<math>| mit: \omega_{1} = 0,03012  </math>
 
|-
 
| || <math>| mit: \omega_{2} = 0,0410 </math>
 
|-
 
| || <math>| mit: \mu_{Eds} = 0,0312  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,1} = 0,03  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,2} = 0,04  </math>
 
|-
 
|<math> \omega = 0,0306 + \frac{ 0,0410 - 0,0306 } { 0,04 - 0,03} \cdot ( 0,03012  - 0,03 )  </math>||
 
|-
 
|<math> \omega = 0,0307 </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
|<math>  a_{s,1} = \frac{1}{ \sigma_{sd}} \cdot ( \omega \cdot b \cdot d \cdot f_{cd} + N_{Ed} )  </math>|| <math>| mit: \omega = 0,0307  </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}  </math>
 
|-
 
| || <math>| mit: d = 17,3 cm  </math>#
 
|-
 
| || <math>| mit: b = 100 cm  </math>
 
|-
 
| || <math>| mit: N_{Ed} = 0 kN  </math>
 
|-
 
|<math>  a_{s,1} = \frac{1}{ 43,5 \frac{kN}{cm^{2}}} \cdot ( 0,0307 \cdot 100 cm \cdot 17,3 cm \cdot 1,42 \frac{kN}{cm^{2}} + 0 kN  )  </math>||
 
|-
 
|<math>  a_{s,1} = 1,73 \frac{cm^{2}}{m} </math>||
 
|}
 
 
gewählt:R257 ø7/15cm, <math>{{a}_{sw}}= 2,57 \frac{cm^{2}}{m} </math>
 
 
====Bereich der Arbeitsfuge Kopfpunkt====
 
 
=====Vorbemessung=====
 
::{|
 
| <math> z_{est} = 0,75 \cdot h  </math>||<math>| mit: h = h_{L} = 20 cm </math>
 
|-
 
| <math> z_{est} = 0,75 \cdot 20 cm </math>||
 
|-
 
| <math> z_{est} = 15 cm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> M_{Ed,est} = M_{Ed} - N_{Ed} \cdot z_{s1,est} </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: N_{Ed} =  extr n = - 11,56 \frac{kN}{m}</math>
 
|-
 
| ||<math>| mit: M_{Ed} = M_{Ed,S}  =6.63 \frac{kNm}{m}  </math>
 
|-
 
| <math> M_{Ed,est} = 6.63 \frac{kNm}{m}  - (- 11,56 \frac{kN}{m}) \cdot 0,15 m </math>||
 
|-
 
| <math> M_{Ed,est} = 8.36 \frac{kNm}{m}</math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> a_{s,est} = \frac{M_{Ed,est}}{z_{s1,est} \cdot f_{yd} } + \frac{N_{Ed}}{f_{yd}}  </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: f_{yd} = 43,5 \frac{kN}{cm^{2}} </math>
 
|-
 
| ||<math>| mit: N_{Ed} =  extr n = - 11,56 \frac{kN}{m} </math>
 
|-
 
| ||<math>| mit: M_{Ed,est} = 6.63 \frac{kNm}{m} </math>
 
|-
 
| <math> a_{s,est} = \frac{8.36 \frac{kNm}{m}}{15 cm \cdot 43,5 \frac{kN}{cm^{2}} } + \frac{- 11,56 \frac{kN}{m}}{43,5 \frac{kN}{cm^{2}}}  </math>||
 
|-
 
| <math> a_{s,est} \approx 1,02 \frac{kNcm}{m}  </math>||
 
|}
 
 
gewählt: R188 ø6/15cm, <math>{{a}_{s}}= 1,88 \frac{cm^{2}}{m} </math>
 
 
 
=====Querschnittsgeometrie=====
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
C_{nom,dur}  \\
 
C_{nom,b,Bü} \\
 
C_{nom,b,L}
 
\end{cases}</math><br /><br />
 
 
<br />
 
::{|
 
| <math> C_{nom,dur} = C_{min,dur} +  \Delta C_{dev} </math>|| <math>| mit: C_{min,dur} = 10 mm </math> für XC1
 
|-
 
| || <math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,dur} = 10 mm +  10 mm </math>||
 
|-
 
| <math> C_{nom,dur} = 20 mm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> C_{nom,b,Bü} = C_{min,b,Bü} +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,Bü} = 0 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,b,Bü} = 0 mm  +  10 mm    </math>||
 
|-
 
| <math> C_{nom,b,Bü} = 10 mm    </math>||
 
|}
 
 
 
<br />
 
::{|
 
| <math> C_{nom,b,L} = C_{min,b,L} - \varnothing bue +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,L} = 7 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm  </math>
 
|-
 
| ||<math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| <math> C_{nom,b,L} = 6 mm  - 0 mm +  \Delta 10 mm    </math>||
 
|-
 
| <math> C_{nom,b,L} = 16 mm    </math>||
 
|}
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
20 mm  \\
 
10 mm  \\
 
16 mm
 
\end{cases}</math><br /><br />
 
 
::{|
 
| <math> d_{1} = c_{v} + \varnothing bue + \frac{\varnothing L}{2}</math>|| <math>| mit: c_{v} = 20 mm </math>
 
|-
 
| || <math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| || <math>| mit: \varnothing L = 6 mm </math>
 
|-
 
| <math> d_{1} = 20 mm  + 0 mm  + \frac{6 mm}{2} </math>||
 
|-
 
| <math> d_{1} = 23,0 mm</math>||
 
|}
 
 
::{|
 
| <math> d = h_{L} - d_{1} </math>|| <math>| mit: d_{1} = 23 mm </math>
 
|-
 
| || <math>| mit: h_{L} = 200 mm </math>
 
|-
 
| <math> d = 200 mm - 23,0 mm </math>||
 
|-
 
| <math> d = 177 mm = 17,7 cm </math>||
 
|}
 
 
=====Bemessung mit dem ω-Verfahren=====
 
 
 
::{|
 
|<math> z_{s} = d - \frac{h_{L} }{2} </math>|| <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: h_{L} = 20 cm </math>
 
|-
 
|<math> z_{s} = 17,7 cm  - \frac{20 cm}{2} </math>||
 
|-
 
|<math> z_{s} = 7,7 cm  </math>||
 
|}
 
 
::{|
 
|<math> M_{Eds} = M_{Ed,S} - extr n \cdot z_{s} </math>|| <math>| mit: z_{s} = 7,7 cm  </math>
 
|-
 
| || <math>| extr n = (-11,56) \frac{kN}{m} </math>
 
|-
 
| ||<math>| mit: M_{Ed,S}  =663 \frac{kNcm}{m}  </math>
 
|-
 
|<math> M_{Eds} = 663 \frac{kNcm}{m}  - (-11,56) \frac{kN}{m} \cdot 7,7 cm </math>||
 
|-
 
|<math> M_{Eds} = 752,01 \frac{kNcm}{m} </math>|| 
 
|}
 
 
 
::{|
 
|<math>  \mu_{Eds} = \frac{M_{Eds}}{b\cdot d^{2} \cdot  f_{cd}}    </math>|| <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: b = 100 cm </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}</math>
 
|-
 
| || <math>| mit: M_{Eds} = 752,01 \frac{kNcm}{m} </math>
 
|-
 
|<math>  \mu_{Eds} = \frac{752,01 \frac{kNcm}{m}}{100 cm \cdot (17,7 cm)^{2} \cdot  1,42 \frac{kN}{cm^{2}} }    </math>||
 
|-
 
|<math>  \mu_{Eds} = 0,0169  </math>||
 
|}
 
<br />
 
 
<br />
 
 
::{|
 
|<math> \omega = \omega_{1} + \frac{ \omega_{2} - \omega_{1} } { \mu_{Eds,2} - \mu_{Eds,1}} \cdot ( \mu_{Eds} - \mu_{Eds,1} ) </math>||
 
<math>| mit: \omega_{1} = 0,0101  </math>
 
|-
 
| || <math>| mit: \omega_{2} = 0,0203 </math>
 
|-
 
| || <math>| mit: \mu_{Eds} = 0,0169  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,1} = 0,01  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,2} = 0,02  </math>
 
|-
 
|<math> \omega = 0,0101 + \frac{ 0,0203 - 0,0101 } { 0,02  - 0,01 } \cdot ( 0,0169  - 0,01 )  </math>||
 
|-
 
|<math> \omega = 0,01714 </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
|<math>  a_{s,1} = \frac{1}{ \sigma_{sd}} \cdot ( \omega \cdot b \cdot d \cdot f_{cd} + N_{Ed} )  </math>|| <math>| mit: \omega = 0,01714  </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}  </math>
 
|-
 
| || <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: b = 100 cm  </math>
 
|-
 
| || <math>| mit: N_{Ed} = extr n = (-11,56) \frac{kN}{m} </math>
 
|-
 
|<math>  a_{s,1} = \frac{1}{ 43,5 \frac{kN}{cm^{2}}} \cdot ( 0,0151 \cdot 100 cm \cdot 17,7 cm \cdot 1,42 \frac{kN}{cm^{2}} + (-11,56) \frac{kN}{m}  )  </math>||
 
|-
 
|<math>  a_{s,1} = 0,61 \frac{cm^{2}}{m} </math>||
 
|}
 
 
gewählt: R188 ø6/15cm, <math>{{a}_{s}}= 1,88 \frac{cm^{2}}{m} </math>
 
 
====Bereich der Arbeitsfuge Fußpunkt====
 
=====Vorbemessung=====
 
::{|
 
| <math> z_{est} = 0,75 \cdot h  </math>||<math>| mit: h = h_{L} = 20 cm </math>
 
|-
 
| <math> z_{est} = 0,75 \cdot 20 cm </math>||
 
|-
 
| <math> z_{est} = 15 cm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> M_{Ed,est} = M_{Ed} - N_{Ed} \cdot z_{s1,est} </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: N_{Ed} =  extr n = 11,56 \frac{kN}{m}</math>
 
|-
 
| ||<math>| mit: M_{Ed} = M_{Ed,S}  =6.63 \frac{kNm}{m}  </math>
 
|-
 
| <math> M_{Ed,est} = 6.63 \frac{kNm}{m}  -  11,56 \frac{kN}{m} \cdot 0,15 m </math>||
 
|-
 
| <math> M_{Ed,est} = 4.9 \frac{kNm}{m}</math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> a_{s,est} = \frac{M_{Ed,est}}{z_{s1,est} \cdot f_{yd} } + \frac{N_{Ed}}{f_{yd}}  </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: f_{yd} = 43,5 \frac{kN}{cm^{2}} </math>
 
|-
 
| ||<math>| mit: N_{Ed} =  extr n = 11,56 \frac{kN}{m} </math>
 
|-
 
| ||<math>| mit: M_{Ed,est} = 4.9 \frac{kNm}{m} </math>
 
|-
 
| <math> a_{s,est} = \frac{490 \frac{kNcm}{m}}{15 cm \cdot 43,5 \frac{kN}{cm^{2}} } + \frac{11,56 \frac{kN}{m}}{43,5 \frac{kN}{cm^{2}}}  </math>||
 
|-
 
| <math> a_{s,est} \approx 1,02 \frac{kNcm}{m}  </math>||
 
|}
 
 
gewählt: R188 ø6/15cm, <math>{{a}_{s}}= 1,88 \frac{cm^{2}}{m} </math>
 
 
=====Querschnittsgeometrie=====
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
C_{nom,dur}  \\
 
C_{nom,b,Bü} \\
 
C_{nom,b,L}
 
\end{cases}</math><br /><br />
 
 
<br />
 
::{|
 
| <math> C_{nom,dur} = C_{min,dur} +  \Delta C_{dev} </math>|| <math>| mit: C_{min,dur} = 10 mm </math> für XC1
 
|-
 
| || <math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,dur} = 10 mm +  10 mm </math>||
 
|-
 
| <math> C_{nom,dur} = 20 mm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> C_{nom,b,Bü} = C_{min,b,Bü} +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,Bü} = 0 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,b,Bü} = 0 mm  +  10 mm    </math>||
 
|-
 
| <math> C_{nom,b,Bü} = 10 mm    </math>||
 
|}
 
 
 
<br />
 
::{|
 
| <math> C_{nom,b,L} = C_{min,b,L} - \varnothing bue +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,L} = 7 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm  </math>
 
|-
 
| ||<math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| <math> C_{nom,b,L} = 6 mm  - 0 mm +  \Delta 10 mm    </math>||
 
|-
 
| <math> C_{nom,b,L} = 16 mm    </math>||
 
|}
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
20 mm  \\
 
10 mm  \\
 
16 mm
 
\end{cases}</math><br /><br />
 
 
::{|
 
| <math> d_{1} = c_{v} + \varnothing bue + \frac{\varnothing L}{2}</math>|| <math>| mit: c_{v} = 20 mm </math>
 
|-
 
| || <math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| || <math>| mit: \varnothing L = 6 mm </math>
 
|-
 
| <math> d_{1} = 20 mm  + 0 mm  + \frac{6 mm}{2} </math>||
 
|-
 
| <math> d_{1} = 23,0 mm</math>||
 
|}
 
 
::{|
 
| <math> d = h_{L} - d_{1} </math>|| <math>| mit: d_{1} = 23 mm </math>
 
|-
 
| || <math>| mit: h_{L} = 200 mm </math>
 
|-
 
| <math> d = 200 mm - 23,0 mm </math>||
 
|-
 
| <math> d = 177 mm = 17,7 cm </math>||
 
|}
 
 
=====Bemessung mit dem ω-Verfahren=====
 
 
 
::{|
 
|<math> z_{s} = d - \frac{h_{L} }{2} </math>|| <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: h_{L} = 20 cm </math>
 
|-
 
|<math> z_{s} = 17,7 cm  - \frac{20 cm}{2} </math>||
 
|-
 
|<math> z_{s} = 7,7 cm  </math>||
 
|}
 
 
::{|
 
|<math> M_{Eds} = M_{Ed,S} - extr n \cdot z_{s} </math>|| <math>| mit: z_{s} = 7,7 cm  </math>
 
|-
 
| || <math>| extr n = 11,56 \frac{kN}{m} </math>
 
|-
 
| ||<math>| mit: M_{Ed,S}  =663 \frac{kNcm}{m}  </math>
 
|-
 
|<math> M_{Eds} = 663 \frac{kNcm}{m}  - 11,56 \frac{kN}{m} \cdot 7,7 cm </math>||
 
|-
 
|<math> M_{Eds} = 573.988 \frac{kNcm}{m} </math>|| 
 
|}
 
 
 
::{|
 
|<math>  \mu_{Eds} = \frac{M_{Eds}}{b\cdot d^{2} \cdot  f_{cd}}    </math>|| <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: b = 100 cm </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}</math>
 
|-
 
| || <math>| mit:  M_{Eds} = 573.99 \frac{kNcm}{m} </math>
 
|-
 
|<math>  \mu_{Eds} = \frac{ 573.99 \frac{kNcm}{m}}{100 cm \cdot (17,7 cm)^{2} \cdot  1,42 \frac{kN}{cm^{2}} }    </math>||
 
|-
 
|<math>  \mu_{Eds} = 0,0129  </math>||
 
|}
 
<br />
 
 
<br />
 
 
::{|
 
|<math> \omega = \omega_{1} + \frac{ \omega_{2} - \omega_{1} } { \mu_{Eds,2} - \mu_{Eds,1}} \cdot ( \mu_{Eds} - \mu_{Eds,1} ) </math>||
 
<math>| mit: \omega_{1} = 0,0101  </math>
 
|-
 
| || <math>| mit: \omega_{2} = 0,0203 </math>
 
|-
 
| || <math>| mit: \mu_{Eds} = 0,0129  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,1} = 0,01  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,2} = 0,02  </math>
 
|-
 
|<math> \omega = 0,0101 + \frac{ 0,0203 - 0,0101 } { 0,02  - 0,01 } \cdot ( 0,0169  - 0,01 )  </math>||
 
|-
 
|<math> \omega = 0,01306 </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
|<math>  a_{s,1} = \frac{1}{ \sigma_{sd}} \cdot ( \omega \cdot b \cdot d \cdot f_{cd} + N_{Ed} )  </math>|| <math>| mit: \omega = 0,01306  </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}  </math>
 
|-
 
| || <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: b = 100 cm  </math>
 
|-
 
| || <math>| mit: N_{Ed} = extr n = 11,56 \frac{kN}{m} </math>
 
|-
 
|<math>  a_{s,1} = \frac{1}{ 43,5 \frac{kN}{cm^{2}}} \cdot ( 0,0151 \cdot 100 cm \cdot 17,7 cm \cdot 1,42 \frac{kN}{cm^{2}} + 11,56 \frac{kN}{m}  )  </math>||
 
|-
 
|<math>  a_{s,1} = 1,02 \frac{cm^{2}}{m} </math>||
 
|}
 
 
gewählt: R188 ø6/15cm, <math>{{a}_{s}}= 1,88 \frac{cm^{2}}{m} </math>
 
 
===Querkraftbemessung===
 
 
====Bauteile ohne Querkraftbewehrung====
 
 
::{|
 
|<math> V_{Ed} = C_{Ed} \cdot cos( \alpha )  </math>||<math>| mit: C_{Ed} = 22.86 \frac{kN}{m} </math>
 
|-
 
|||<math>| mit: \alpha = 30,38°  </math>
 
|-
 
|<math> V_{Ed} = 22.86 \frac{kN}{m} \cdot cos( 30,38° )  </math>||
 
|-
 
|<math> V_{Ed} = 19.72 \frac{kN}{m}  </math>||
 
|}
 
 
 
 
::{|
 
|<math> C_{Rdc} = \frac{0,15}{\gamma_{c}}  </math>||<math>| mit: \gamma_{c} = 1,5</math>
 
|-
 
|<math> C_{Rdc} = \frac{0,15}{1,5}  </math>||
 
|-
 
|<math> C_{Rdc} = 0,1  </math>||
 
|}
 
 
 
 
 
 
::{|
 
|<math> k=1+\sqrt{\frac{200}{d}}  </math>|| <math>\begin{cases}
 
\ge 1,0  \\
 
\le 2,0
 
\end{cases}</math>
 
|-
 
| || <math>| mit: d = 177 mm </math>
 
|-
 
|<math>k=1+\sqrt{\frac{200}{177}}</math> ||
 
|-
 
|<math>k=2,06</math> || <math>\begin{cases}
 
\ge 1,0  \\
 
\ge 2,0
 
\end{cases}</math>
 
|-
 
|<math>k=2</math> ||
 
|}
 
 
 
 
 
 
 
::{|
 
|<math> \rho_{l} = \frac{A_{sl}}{b_{w} \cdot d} </math>||<math> \le 0,02 </math>
 
|-
 
| || <math>| mit: A_{sl} = 1,88 \frac{cm^{2}}{m}  </math>
 
|-
 
| || <math>| mit: b_{w} = 100 cm </math>
 
|-
 
| || <math>| mit: d = 17,7 cm</math>
 
|-
 
|<math> \rho_{l} = \frac{1,88 \frac{cm^{2}}{m} }{100 cm \cdot 17,7 cm }</math>||
 
|-
 
|<math> \rho_{l} =1,06 \cdot 10^{-3}  </math>||<math> \le 0,02 </math>
 
|}
 
 
 
 
::{|
 
|<math> A_{c} = A - A_{s} </math>|| <math>| mit: A =  b_{w} \cdot h_{L} =  b_{w} \cdot h_{L} =1000 mm \cdot 200 mm = 200000 </math>
 
|-
 
| || <math>| mit: A_{s, R188, R257} = 188 \frac{mm^{2}}{m} + 257 \frac{mm^{2}}{m} = 445 \frac{mm^{2}}{m} </math>
 
|-
 
|<math> A_{c} = 200000 mm^{2} - 445 mm^{2} </math>||
 
|-
 
|<math> A_{c} = 199555 mm^{2}  </math>||
 
|}
 
 
 
 
::{|
 
|<math> \sigma_{cp}=\frac{ N_{Ed} }{ A_{c} } </math> || <math>| mit: N_{Ed} = extr n = \pm  11560 \frac{N}{m}  </math>
 
|-
 
| || <math>| mit: A_{c} = 199555 mm^{2}</math>
 
|-
 
|<math> \sigma_{cp}=\frac{ 11560 \frac{N}{m} }{ 199555 mm^{2} } </math> ||
 
|-
 
|<math> \sigma_{cp} \approx  0,06 \frac{N}{m \cdot mm^{2}} </math> ||
 
|}
 
 
 
 
 
::{|
 
|<math> V_{Rd,c}= \left[ C_{Rdc} \cdot k \cdot \left( 100 \cdot \rho_{l} \cdot f_{ck} \right)^{\frac{1}{3}} + 0,12 \cdot \sigma_{cp} \right] \cdot b_{w} \cdot d </math> || <math>| mit: \sigma_{cp} =  0,06 \frac{N}{ mm^{2}}  </math>
 
|-
 
| ||<math>| mit: \rho_{l} =1,06 \cdot 10^{-3}  </math>
 
|-
 
| ||<math>| mit: k=2 </math>
 
|-
 
| ||<math>| mit:  C_{Rdc} = 0,1  </math>
 
|-
 
| ||<math>| mit:  f_{ck} = 25 \frac{kN}{cm^{2}}  </math>
 
|-
 
| ||<math>| mit:  b_{w} = 1000 mm </math>
 
|-
 
| ||<math>| mit:  d = 177 mm  </math>
 
|-
 
|<math> V_{Rd,c}= \left[ 0,1  \cdot 2 \cdot \left( 100 \cdot 1,06 \cdot 10^{-3} \cdot 25 \frac{N}{mm^{2}} \right)^{\frac{1}{3}} + 0,12 \cdot 0,06 \frac{N}{mm^{2}} \right] \cdot 1000 mm \cdot 177 mm </math> ||
 
|-
 
|<math> V_{Rd,c}=  50261 N</math> ||<math>\ge V_{Ed}</math>
 
|-
 
|<math> V_{Rd,c}=  50,26 kN </math> ||<math>\ge 19.72 kN </math>
 
|}
 
 
Weitere Bemessung Hinsichtlich der Querkraft für dieses Bauteil nicht erforderlich da der Nachweis erfüllt ist .
 
 
== Bemessung im Grenzzustand der Gebrauchstauglichkeit==
 
=== Begrenzung der Biegeschlankheit des Treppenlauf===
 
 
:{|
 
|<math> \frac{l}{d} \leq  K \left[ 11 + 1,5 \cdot \sqrt{ f_{ck}} \cdot \frac{\rho_{0} }{\rho} + 3,2 \cdot \sqrt{ f_{ck}} \cdot  (\frac{\rho_{0} }{\rho} -1 )^{3/2}  \right] \leq \left( \frac{l}{d} \right)_{max}  </math>|| ||| für: <math> \rho \le \rho_{0} </math>
 
|-
 
|<math> \frac{l}{d} \leq  K \left[ 11 + 1,5 \sqrt{ f_{ck}} \cdot \frac{\rho_{0} }{\rho - \rho_{'}}  + \frac{1}{12} \cdot \sqrt{ f_{ck}}  \cdot (\frac{  \rho_{'}}{\rho_{0}})^{1/2} \right] \leq \left( \frac{l}{d} \right)_{max}  </math>|| |||für: <math> \rho > \rho_{0} </math>
 
|}
 
 
 
::{|
 
|<math> \rho_{0} =  10^{-3} \cdot \sqrt{ f_{ck}} </math>||<math>| mit: f_{ck}  = 25 \frac{N}{mm^{2}} </math>
 
|-
 
|<math> \rho_{0} =  10^{-3} \cdot \sqrt{25 \frac{N}{mm^{2}}} </math>||
 
|-
 
|<math> \rho_{0} = 5 \cdot 10^{-3} </math>||
 
|}
 
 
 
::{|
 
|<math> \rho =  \frac{A_{s1}}{b \cdot d} </math>||<math>| mit: A_{s1}  = 2,57 \frac{cm^{2}}{m}  </math>
 
|-
 
| ||<math>| mit: d = 17,3 cm  </math>
 
|-
 
| ||<math>| mit: b = 100 cm </math>
 
|-
 
|<math> \rho =  \frac{2,57 \frac{cm^{2}}{m} }{100 cm \cdot 17,3 cm} </math>||
 
|-
 
|<math> \rho = 1,49 \cdot 10^{-3} </math>|| <math>\le \rho_{0} </math>
 
|}
 
 
 
:{|
 
|<math> \frac{l}{d} \leq  K \left[ 11 + 1,5 \cdot \sqrt{ f_{ck}} \cdot \frac{\rho_{0} }{\rho} + 3,2 \cdot \sqrt{ f_{ck}} \cdot  (\frac{\rho_{0} }{\rho} -1 )^{3/2}  \right] \leq \left( \frac{l}{d} \right)_{max}  </math>||
 
|}
 
 
 
:{|
 
|<math> \left( \frac{l}{d} \right)_{vorh} = \frac{l}{d}  </math>||<math>| mit:  d = 0,173 m  </math>
 
|-
 
| ||<math>|mit:  l =  \sqrt{ (8 \cdot 0,29m)^{2} + (8 \cdot 0,17m)^{2} } = 2,69 m </math>
 
|-
 
|<math> \left( \frac{l}{d} \right)_{vorh} = \frac{2,69 m}{0,173 m}  </math>||
 
|-
 
|<math> \left( \frac{l}{d} \right)_{vorh} = 15,55  </math>||
 
|}
 
 
 
:{|
 
|<math> \frac{l}{d}_{zul} = K \left[ 11 + 1,5 \cdot \sqrt{ f_{ck}} \cdot \frac{\rho_{0} }{\rho} + 3,2 \cdot \sqrt{ f_{ck}} \cdot  (\frac{\rho_{0} }{\rho} -1 )^{3/2}  \right] </math>||<math>| mit:  K_{Innenfeld} = 1,5  </math>
 
|-
 
| ||<math>| mit: f_{ck}  = 25 \frac{N}{mm^{2}}  </math>
 
|-
 
| ||<math>| mit: \rho = 1,49 \cdot 10^{-3}  </math>
 
|-
 
| ||<math>| mit: \rho_{0} = 5 \cdot 10^{-3}  </math>
 
|-
 
|<math> \frac{l}{d}_{zul} = 1,5 \left[ 11 + 1,5 \cdot \sqrt{ 25 \frac{N}{mm^{2}}} \cdot \frac{5 \cdot 10^{-3} }{1,49 \cdot 10^{-3}} + 3,2 \cdot \sqrt{ 25 \frac{N}{mm^{2}}} \cdot  (\frac{5 \cdot 10^{-3}}{1,49 \cdot 10^{-3}} -1 )^{3/2}  \right] </math>||
 
|-
 
|<math> \frac{l}{d}_{zul} = 155.64 </math>||<math> \ge \left( \frac{l}{d} \right)_{vorh} </math>
 
|}
 
 
 
 
 
 
 
:<math>\left( \frac{l}{d} \right)_{max} \le \begin{cases}
 
K \cdot 35  \\
 
K^{2} \cdot \frac{150}{l}
 
\end{cases}</math><br /><br />
 
 
 
 
:{|
 
|<math> \left( \frac{l}{d} \right)_{max} K \cdot 35  </math>||<math>| mit:  K_{Innenfeld} = 1,5  </math>
 
|-
 
|<math> \left( \frac{l}{d} \right)_{max} = 1,5 \cdot 35  </math>||
 
|-
 
|<math> \left( \frac{l}{d} \right)_{max} = 52,5  </math>||<math> \ge \left( \frac{l}{d} \right)_{vorh} </math>
 
|}
 
 
 
 
 
 
:{|
 
|<math> \left( \frac{l}{d} \right)_{max} = K^{2} \cdot \frac{150}{l}  </math>||<math>| mit:  K_{Innenfeld} = 1,5  </math>
 
|-
 
| ||<math>| mit:  l =  \sqrt{ (8 \cdot 0,29m)^{2} + (8 \cdot 0,17m)^{2} } = 2,69 m </math>
 
|-
 
|<math> \left( \frac{l}{d} \right)_{max} = 1,5^{2} \cdot \frac{150}{2,69 m}  </math>||
 
|-
 
|<math> \left( \frac{l}{d} \right)_{max} = 125, 46</math>||<math> \ge \left( \frac{l}{d} \right)_{vorh} </math>
 
|}
 
 
= Lösung des Zwischenpodest=
 
 
==Berechnung und Bemessung des Zwischenpodest==
 
Das Zwischenpodest wird in diesem  beispiel als Dreiseitig gelagert und somit zweiseitig gespannt betrachtet
 
 
==Einwirkungen==
 
===Teilsicherheiten ===
 
 
::{|
 
|<math> \gamma_\mathrm{Q} =1,50 </math> ||
 
|-
 
|<math> \gamma_\mathrm{G} =1,35 </math> ||
 
|}
 
=== Ständige===
 
 
 
:{|
 
| <math> g_{d}= g_{k} \cdot \gamma_\mathrm{G}</math> ||
 
|}
 
 
 
::{|
 
| <math>  g_{k} = h \cdot \gamma_{1} + \gamma_{G_{s}=1,5 cm} + N_{s} \cdot \gamma_{Naturstein} + \gamma_{Estrich} \cdot  d_{Estrich} </math>|| <math>| mit: h_{P}= 20cm  </math>
 
|-
 
| || <math>| mit: \gamma_{1}= 25 \frac{kN}{m^{3}} </math>
 
|-
 
| || <math>| mit: \gamma_{G_{s}=1,5 cm} = 0,18 \frac{kN}{m^{2}} </math>
 
|-
 
| || <math>| mit: \gamma_{Naturstein} = 0,3 \frac{\frac{kN}{m^{2}}}{cm} </math>
 
|-
 
| || <math>| mit: N_{s} = 3 cm </math>
 
|-
 
| || <math>| mit: \gamma_{Estrich} = 22 \frac{\frac{kN}{m^{2}}}{cm} </math>
 
|-
 
| || <math>| mit: d_{Estrich} = 4 cm </math>
 
|-
 
| || <math>| mit: \gamma_{Trittschalldämmung} = 0,01 \frac{\frac{kN}{m^{2}}}{cm} </math>
 
|-
 
| || <math>| mit: d_{Trittschalldämmung} = 4 cm </math>
 
|-
 
|<math>  g_{k} = 0,20 m \cdot 25 \frac{kN}{m^{3}} + 0,18 \frac{kN}{m^{2}} + 3 cm \cdot 0,3 \frac{\frac{kN}{m^{2}}}{cm} + 0,01 \frac{\frac{kN}{m^{2}}}{cm} \cdot 4 cm + 0,22 \frac{\frac{kN}{m^{2}}}{cm} \cdot  4 cm </math>||
 
|-
 
|<math>  g_{k} = 7 \frac{kN}{m^{2}} </math>||
 
|}
 
 
:{|
 
| <math> g_{d}= g_{k} \cdot \gamma_\mathrm{G}</math> || <math>| mit: \gamma_\mathrm{G} = 1,5 </math>
 
|-
 
| || <math>| mit:g_{k} = 7 \frac{kN}{m^{2}}  </math>
 
|-
 
| <math> g_{d}= 7 \frac{kN}{m^{2}} \cdot 1,5 </math> ||
 
|-
 
| <math> g_{d}=10,5 \frac{kN}{m^{2}}  </math> ||
 
|}
 
 
=== Veränderliche===
 
 
{| class="wikitable"
 
|+style="text-align:left;"|Lotrechte Nutzlasten für Treppen <ref Name = "HandbuchEC1" group="F">Handbuch Eurocode 1 Einwirkungen – Band 1 Grundlagen, Nutz- und Eigenlasten, Brandeinwirkungen, Schnee-, Wind-, Temperaturlasten Ausgabedatum: 06.2012 </ref>
 
|rowspan="2"|
 
|colspan="2"|1
 
|2
 
|3
 
|4
 
|5
 
|-
 
!colspan="2"|Kategorie
 
!Nutzung
 
!Beispiele
 
!<math> q_{k} [ \frac{kN}{m^{2}}] </math>
 
!<math> Q_{k} [kN] </math>
 
|-
 
|19
 
|rowspan="3" style="background:#FFFF40"|T
 
|style="background:#FFFF40"|T1
 
|rowspan="3" style="background:#FFFF40"|Treppen und Treppenpodeste
 
|style="background:#FFFF40"|Treppen und Treppenpodeste in Wohngebäuden, Bürogebäuden und von Arztpraxen ohne schweres Gerät
 
|style="background:#FFFF40"|3,0
 
|2,0
 
|-
 
|20
 
|T2
 
|alle Treppen und Treppenpodeste, die nicht in TI oder T3 eingeordnet werden können
 
|5,0
 
|2,0
 
|-
 
|21
 
|T3
 
|Zugänge und Treppen von Tribünen ohne feste Sitzplätze, die als Fluchtwege dienen
 
|7,5
 
|3,0
 
|}
 
 
::{|
 
|<math> \underline{ q_{k} = 3,0 \frac{kN}{m^{2}} } </math>||
 
|}
 
<br />
 
 
:{|
 
|<math> q_{d} =q_{k} \cdot \gamma_\mathrm{ Q } </math>|| <math>| mit: q_{k} = 3,0 \frac{kN}{m^{2}} </math>
 
|-
 
| || <math>| mit: \gamma_\mathrm{ Q } = 1,5 </math>
 
|-
 
|<math> q_{d} = 3,0 \frac{kN}{m^{2}} \cdot 1,5 </math>||
 
|-
 
|<math> q_{d} = 4,5 \frac{kN}{m^{2}} </math>||
 
|}
 
 
===Gesamt Einwirkungen===
 
 
:{|
 
| <math> F_{d}=g_{d}+q_{d} </math> || <math>| mit: q_{d} = 4,5 \frac{kN}{m^{2}}  </math>
 
|-
 
| || <math>| mit: g_{d} = 10,5 \frac{kN}{m^{2}}  </math>
 
|-
 
| <math> F_{d}= 10,5 \frac{kN}{m^{2}} + 4,5 \frac{kN}{m^{2}} </math> ||
 
|-
 
| <math> F_{d}=15,0 \frac{kN}{m^{2}} </math> ||
 
|}
 
 
 
 
 
:{|
 
| <math> F_{0} = C_{Ed}    </math> || <math>| mit: C_{Ed}    =22.86 \frac{kN}{m}  </math>
 
|-
 
| <math> F_{0} = 22.86 \frac{kN}{m}  </math> ||
 
|}
 
 
 
 
 
:{|
 
| <math> m_{0} = M_{Ed,S}    </math> || <math>| mit: M_{Ed,S}  =6.63 \frac{kNm}{m}  </math>
 
|-
 
| <math> m_{0} = 6.63 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
==Statisches System==
 
Es wurde sich im Rahmen dieses Beispiels für eine Zwischenpodestplatte mit dreiseitig frei drehbar gelagerten Rändern entschieden.
 
 
:{|
 
|<math>a_{1}=\mathrm{min}\begin{cases}
 
\frac{h_{P}}{2} \\
 
\frac{t}{2}
 
\end{cases}</math>||
 
|-
 
| ||<math>| mit: h_{P} = 20 cm</math>
 
|-
 
| ||<math>| mit: t_{1} = 36,5 cm</math>
 
|-
 
|<math>a_{1}=\mathrm{min}\begin{cases}
 
\frac{20 cm}{2} \\
 
\frac{36,5 cm}{2}
 
\end{cases}</math>||
 
|-
 
|<math>a_{1}=\mathrm{min}\begin{cases}
 
10 cm \\
 
18,25 cm
 
\end{cases}</math>||
 
|-
 
|<math>a_{1} = 10 cm </math>||
 
|}
 
 
 
 
 
:{|
 
|<math>a_{2}=\mathrm{min}\begin{cases}
 
\frac{h_{P}}{2} \\
 
\frac{t}{2}
 
\end{cases}</math>||
 
|-
 
| ||<math>| mit: h_{P} = 20 cm</math>
 
|-
 
| ||<math>| mit: t_{2} = 24 cm</math>
 
|-
 
|<math>a_{2}=\mathrm{min}\begin{cases}
 
\frac{20 cm}{2} \\
 
\frac{24 cm}{2}
 
\end{cases}</math>||
 
|-
 
|<math>a_{2}=\mathrm{min}\begin{cases}
 
10 cm \\
 
12 cm
 
\end{cases}</math>||
 
|-
 
|<math>a_{2} = 10 cm </math>||
 
|}
 
 
 
 
:{|
 
| <math> b_{P} = 2 \cdot b + b^{'}  +  a_{2} + a_{2}  </math> || <math>| mit: b = 1,0 m  </math>
 
|-
 
| ||<math>| mit: a_{1}  = 0,1 m  </math>
 
|-
 
| ||<math>| mit: a_{2}  = 0,1 m  </math>
 
|-
 
| ||<math>| mit: b^{'}  = 0,25 m  </math>
 
|-
 
| <math> b_{P} = 2 \cdot 1,0 m + 0,25 m + 0,1 m + 0,1 m  </math> ||
 
|-
 
| <math> b_{P} = 2,45 m  </math> ||
 
|}
 
 
 
 
 
:{|
 
|<math>a_{1}=\mathrm{min}\begin{cases}
 
\frac{h_{P}}{2} \\
 
\frac{t}{2}
 
\end{cases}</math>||
 
|-
 
| ||<math>| mit: h_{P} = 20 cm</math>
 
|-
 
| ||<math>| mit: t_{1} = 12,5 cm</math>
 
|-
 
|<math>a_{1}=\mathrm{min}\begin{cases}
 
\frac{20 cm}{2} \\
 
\frac{12,5 cm}{2}
 
\end{cases}</math>||
 
|-
 
|<math>a_{1}=\mathrm{min}\begin{cases}
 
10 cm \\
 
\approx  6 cm
 
\end{cases}</math>||
 
|-
 
|<math>a_{1} = 6 cm </math>||
 
|}
 
 
 
 
 
:{|
 
| <math> t_{P} = ln  +  a_{1} + a_{2}  </math> || <math>| mit: b = 1,0 m  </math>
 
|-
 
| ||<math>| mit: a_{1}  = 0,1 m  </math>
 
|-
 
| ||<math>| mit: a_{2}  = 0 m  </math>
 
|-
 
| <math> t_{P} =  1,0 m + 0,06 m + 0 m </math> ||
 
|-
 
| <math> t_{P} = 1,06 m  </math> ||
 
|}
 
 
==Schnittgrößen ==
 
 
 
=====Verhältnis Podesttiefe zu Podestbreite feststellen =====
 
::{|
 
| <math> \frac {t_{P}}{b_{P} } </math>||<math>| mit: b_{P} = 2,45 m </math>
 
|-
 
| || <math>| mit: t_{P} = 1,06 m </math>
 
|-
 
| <math> \frac {t_{P}}{b_{P} } = \frac {1,06 m}{2,45 m} </math> ||
 
|-
 
| <math> \frac {t_{P}}{b_{P} } \approx  0,4 </math> ||
 
|}
 
 
====Ermittnlung der Momente über Tabelle ====
 
 
{| class="wikitable"
 
|+style="text-align:left;"|Tafel zur Schnittgrößen Ermittlung von Podestplatten mit dreiseitig frei drehbar gelagerten Rändern <ref Name = "Köseoglu" group="F">Beton-Kalender, Jahrgang 1980, Band 2, Abschnitt E, Abschnitt Treppen, Köseoglu, S.</ref> <ref Name = "AVAK" group="F">Stahlbetonbau in Beispielen - Teil 2: Bemessung von Flächentragwerken nach EC 2 - Konstruktionspläne für Stahlbetonbauteile, Ralf Avak, René Conchon, Markus Aldejohann 2017 Auflage 5</ref>
 
|rowspan="3"|
 
|1
 
|2
 
|3
 
|-
 
!style="background: #eaecf0;" rowspan="2"|Belastungsvariante
 
!style="background: #eaecf0;"|<math> \frac {t_{P}}{b_{P} } </math>
 
!style="background: #eaecf0;"|0,4
 
|-
 
!style="background: #eaecf0;"|
 
!style="background: #eaecf0;" |<math> \chi </math>
 
|-
 
|1
 
|rowspan="3" style="background: #eaecf0;"|I
 
|style="background: #eaecf0;"|<math> m_{x,m} = \frac{F_{d} \cdot t_{P}^{2}}{\chi} </math>
 
|8,04
 
|-
 
|2
 
|style="background: #eaecf0;"|<math> m_{y,m} = \frac{F_{d} \cdot t_{P}^{2}}{\chi} </math>
 
|10,5
 
|-
 
|3
 
|style="background: #eaecf0;"|<math> m_{x,r} = \frac{F_{d} \cdot t_{P}^{2}}{\chi} </math>
 
|4,41
 
|-
 
|4
 
|rowspan="3" style="background: #eaecf0;"|II
 
|style="background: #eaecf0;"|<math> m_{x,m} = \frac{F_{0} \cdot b_{P}}{\chi} </math>
 
|10,5
 
|-
 
|5
 
|style="background: #eaecf0;"|<math> m_{x,m} = - \frac{F_{0} \cdot b_{P}}{\chi} </math>
 
|91,0
 
|-
 
|6
 
|style="background: #eaecf0;"|<math> m_{x,r} = \frac{F_{0} \cdot b_{P}}{\chi} </math>
 
|5,60
 
|-
 
|7
 
|rowspan="3" style="background: #eaecf0;"|III
 
|style="background: #eaecf0;"|<math>m_{y,m} = \frac{m_{0}}{\chi} </math>
 
|5,70
 
|-
 
|8
 
|style="background: #eaecf0;"|<math> m_{y,m} = - \frac{m_{0}}{\chi} </math>
 
|2,20
 
|-
 
|9
 
|style="background: #eaecf0;"|<math> m_{x,r} = \frac{m_{0}}{\chi} </math>
 
|2,35
 
|-
 
|colspan="11" style="text-align:left;"|<math>\chi</math> = Wert in der Tabelle
 
* in Belastungsvariante I wird eine Podestplatte betrachtet die ausschließlich durch eine  Gleichflächenlast <math>F_{d}</math> belastet ist
 
* in Belastungsvariante II wird eine Podestplatte betrachtet die ausschließlich Streckenlast <math>F_{0}</math> am Rand aus der Auflagerkraft des Treppenlaufs belastet ist
 
* in Belastungsvariante III wird eine Podestplatte betrachtet die ausschließlich Streckenmoment <math>m_{0}</math> aus der elastischen Einspannung des Treppenlaufs belastet ist
 
|}
 
 
======m_{x,m}======
 
 
:<math> m_{i} = m_{i,I} + m_{i,II} + m_{i,III}  </math>
 
 
 
::{|
 
| <math> m_{x,m,I} = \frac{F_{d} \cdot t_{P}^{2}}{\chi} </math>||<math>| mit: \chi = 8,04 </math>
 
|-
 
| || <math>| mit: t_{P} = 1,06 m </math>
 
|-
 
| || <math>| mit: F_{d} = 15,0 \frac{kN}{m^{2}}  </math> ||
 
|-
 
| <math> m_{x,m,I} = \frac{ 15,0 \frac{kN}{m^{2}} \cdot (1,06 m)^{2}}{ 8,04} </math> ||
 
|-
 
| <math> m_{x,m,I} \approx  2,1 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
::{|
 
| <math> m_{x,m,II} = \frac{F_{0} \cdot b_{P}}{\chi} </math>||<math>| mit: \chi = 10,5 </math>
 
|-
 
| || <math>| mit: b_{P} = 2,45 m  </math>
 
|-
 
| || <math>| mit: F_{d} = 22.86 \frac{kN}{m}    </math> ||
 
|-
 
| <math> m_{x,m,II} = \frac{ 22.86 \frac{kN}{m} \cdot 2,45 m }{10,5} </math> ||
 
|-
 
| <math> m_{x,m,II} \approx  5,33 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
::{|
 
| <math> m_{x,m,III} = \frac{ m_{0} }{ \chi } </math>||<math>| mit: \chi = 5,70 </math>
 
|-
 
| || <math>| mit: m_{0} = 6.63 \frac{kNm}{m}    </math> ||
 
|-
 
| <math> m_{x,m,III} = \frac{ 6.63 \frac{kNm}{m} }{5,70} </math> ||
 
|-
 
| <math> m_{x,m,III} \approx  1,16 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
:{|
 
|<math> m_{x,m} = m_{x,m,I} + m_{x,m,II} + m_{x,m,III}  </math>||<math>| mit: m_{x,m,I} = 2,1 \frac{kNm}{m} </math>
 
|-
 
| || <math>| mit: m_{x,m,II} = 5,33 \frac{kNm}{m}    </math> ||
 
|-
 
| || <math>| mit: m_{x,m,III} = 1,16  \frac{kNm}{m}  </math> ||
 
|-
 
|<math> m_{x,m} = 2,1 \frac{kNm}{m} + 5,33 \frac{kNm}{m} + 1,16  \frac{kNm}{m} </math>||
 
|-
 
|<math> m_{x,m} = 8,59 \frac{kNm}{m} </math>||
 
|}
 
 
======m_{y,m}======
 
 
:<math> m_{i} = m_{i,I} + m_{i,II} + m_{i,III}  </math>
 
 
::{|
 
| <math> m_{y,m,I} = \frac{F_{d} \cdot t_{P}^{2}}{\chi} </math>||<math>| mit: \chi = 10,5 </math>
 
|-
 
| || <math>| mit: t_{P} = 1,06 m </math>
 
|-
 
| || <math>| mit: F_{d} = 15,0 \frac{kN}{m^{2}}  </math> ||
 
|-
 
| <math> m_{y,m,I} = \frac{ 15,0 \frac{kN}{m^{2}} \cdot (1,06 m)^{2}}{10,5} </math> ||
 
|-
 
| <math> m_{y,m,I} \approx  1,61 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
 
 
::{|
 
| <math> m_{y,m,II} = - \frac{F_{0} \cdot b_{P}}{\chi} </math>||<math>| mit: \chi = 91,0 </math>
 
|-
 
| || <math>| mit: b_{P} = 2,45 m  </math>
 
|-
 
| || <math>| mit: F_{d} = 22.86 \frac{kN}{m}    </math> ||
 
|-
 
| <math> m_{y,m,II} = - \frac{ 22.86 \frac{kN}{m} \cdot 2,45 m}{91,0} </math> ||
 
|-
 
| <math> m_{y,m,II} \approx - 0,62 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
 
 
 
::{|
 
| <math> m_{y,m,III} = - \frac{ m_{0} }{ \chi } </math>||<math>| mit: \chi = 2,20 </math>
 
|-
 
| || <math>| mit: m_{0} = 6.63 \frac{kNm}{m}    </math> ||
 
|-
 
| <math> m_{y,m,III} = - \frac{ 6.63 \frac{kNm}{m} }{2,20} </math> ||
 
|-
 
| <math> m_{y,m,III} \approx - 3,01 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
 
 
:{|
 
|<math> m_{y,m} = m_{y,m,I} + m_{y,m,II} + m_{y,m,III}  </math>||<math>| mit: m_{y,m,I} = 1,61 \frac{kNm}{m} </math>
 
|-
 
| || <math>| mit: m_{y,m,II} = - 0,62 \frac{kNm}{m}    </math> ||
 
|-
 
| || <math>| mit: m_{y,m,III} = - 3,01 \frac{kNm}{m}  </math> ||
 
|-
 
|<math> m_{y,m} = 1,61 \frac{kNm}{m} - 0,62 \frac{kNm}{m} - 3,01 \frac{kNm}{m} </math>||
 
|-
 
|<math> m_{y,m} = - 2,02 \frac{kNm}{m} </math>||
 
|}
 
 
======m_{x,r}======
 
::{|
 
| <math> m_{x,r} = \frac{F_{d} \cdot t_{P}^{2}}{\chi} </math>||<math>| mit: \chi = 4,41 </math>
 
|-
 
| || <math>| mit: t_{P} = 1,06 m </math>
 
|-
 
| || <math>| mit: F_{d} = 15,0 \frac{kN}{m^{2}}  </math> ||
 
|-
 
| <math> m_{x,r} = \frac{ 15,0 \frac{kN}{m^{2}} \cdot (1,06 m)^{2}}{4,41} </math> ||
 
|-
 
| <math> m_{x,r} \approx  3,82 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
 
 
::{|
 
| <math> m_{x,r,II} = \frac{F_{0} \cdot b_{P}}{\chi} </math>||<math>| mit: \chi = 5,60 </math>
 
|-
 
| || <math>| mit: b_{P} = 2,45 m  </math>
 
|-
 
| || <math>| mit: F_{d} = 22.86 \frac{kN}{m}    </math> ||
 
|-
 
| <math> m_{x,r,II} = \frac{ 22.86 \frac{kN}{m} \cdot 2,45 m}{5,60} </math> ||
 
|-
 
| <math> m_{x,r,II} \approx  10,0 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
 
 
 
::{|
 
| <math> m_{x,r,III} = \frac{ m_{0} }{ \chi } </math>||<math>| mit: \chi = 2,35 </math>
 
|-
 
| || <math>| mit: m_{0} = 6.63 \frac{kNm}{m}    </math> ||
 
|-
 
| <math> m_{x,r,III} = \frac{ 6.63 \frac{kNm}{m} }{2,35} </math> ||
 
|-
 
| <math> m_{x,r,III} \approx  2,82 \frac{kNm}{m}  </math> ||
 
|}
 
 
 
 
 
:{|
 
|<math> m_{x,r} = m_{x,r,I} + m_{x,r,II} + m_{x,r,III}  </math>||<math>| mit: m_{x,r,I} = 3,82 \frac{kNm}{m} </math>
 
|-
 
| || <math>| mit: m_{x,r,II} = 10,0 \frac{kNm}{m}    </math> ||
 
|-
 
| || <math>| mit: m_{x,r,III} = 2,82 \frac{kNm}{m}  </math> ||
 
|-
 
|<math> m_{x,r} = 3,82 \frac{kNm}{m} + 10,0 \frac{kNm}{m} + 2,82 \frac{kNm}{m} </math>||
 
|-
 
|<math> m_{x,r} = 16,64 \frac{kNm}{m} </math>||
 
|}
 
 
====Ermittnlung der maximalen Querkraft====
 
 
::{|
 
|<math> V_{Ed} = \frac{ F_{d} \cdot b_{P} }{2} + \frac{ F_{0} \cdot 2 \cdot  t_{P} }{2} </math>||<math>| mit: F_{d} = 15,0 \frac{kN}{m^{2}} </math>
 
|-
 
| ||<math>| mit: b_{P} = 2,45 m  </math>
 
|-
 
| ||<math>| mit: F_{0} = 22.86 \frac{kN}{m}  </math>
 
|-
 
|||<math>| mit: t_{P} = 1,06 m  </math>
 
|-
 
|<math> V_{Ed} = \frac{ 15,0 \frac{kN}{m^{2}} \cdot 2,45 m  }{2} + \frac{ 22.86 \frac{kN}{m} \cdot 2 \cdot  1,06 m }{2} </math>||
 
|-
 
|<math> V_{Ed} = 42,61 \frac{kN}{m^{2}} </math>||
 
|}
 
 
== Bemessung im Grenzzustand der Tragfähigkeit==
 
===Materialparameter===
 
::{|
 
| <math>  f_{cd} = \frac{ \alpha_{cc} \cdot f_{ck} }{ \gamma_{C} }  </math>||<math>| mit: \gamma_{C} = 1.5  </math>
 
|-
 
| || <math>| mit: \alpha_{cc} = 0.85 </math>
 
|-
 
| || <math>| mit: f_{ck}  = 25 \frac{kN}{cm^{2}} </math>
 
|-
 
| <math>  f_{cd} = \frac{  0.85  \cdot 25 \frac{kN}{cm^{2}}}{ 1.5 }  </math> ||
 
|-
 
| <math>  f_{cd} = 14,2 \frac{kN}{cm^{2}} </math> ||
 
|}
 
<br />
 
 
<br />
 
 
 
::{|
 
| <math>  f_{yd} = \frac{ f_{yk}}{\gamma_{s}}  </math>||<math>| mit: f_{yk} = 500 \frac{N}{mm^{2}}  </math>
 
|-
 
| || <math>| mit: \gamma_{s}  = 1.15 </math>
 
|-
 
| <math>  f_{yd} = \frac{ 50 \frac{kN}{cm^{2}}}{1,15}  </math>||
 
|-
 
| <math>  f_{yd} = 43,5 \frac{kN}{cm^{2}} </math>||
 
|}
 
 
 
===Biegebemessung m_{x,m}===
 
 
====Vorbemessung m_{x,m}====
 
::{|
 
| <math> z_{est} = 0,75 \cdot h  </math>||<math>| mit: h = h_{p} = 20 cm </math>
 
|-
 
| <math> z_{est} = 0,75 \cdot 20 cm </math>||
 
|-
 
| <math> z_{est} = 15 cm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> M_{Ed,est} = M_{Ed} - N_{Ed} \cdot z_{s1,est} </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: N_{Ed} = 0 \frac{kN}{m}</math>
 
|-
 
| ||<math>| mit: M_{Ed} = m_{x,m} = 8,59 \frac{kNm}{m} </math>
 
|-
 
| <math> M_{Ed,est} = 8,59 \frac{kNm}{m}  - 0 \frac{kN}{m} \cdot 0,15 m </math>||
 
|-
 
| <math> M_{Ed,est} = 8,59 \frac{kNm}{m}</math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> a_{s,est} = \frac{M_{Ed,est}}{z_{s1,est} \cdot f_{yd} } + \frac{N_{Ed}}{f_{yd}}  </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: f_{yd} = 43,5 \frac{kN}{cm^{2}} </math>
 
|-
 
| ||<math>| mit: N_{Ed} =  0 </math>
 
|-
 
| ||<math>| mit: M_{Ed,est} = 8,59 \frac{kNm}{m} </math>
 
|-
 
| <math> a_{s,est} = \frac{859 \frac{kNcm}{m}}{15 cm \cdot 43,5 \frac{kN}{cm^{2}} } + \frac{0}{43,5 \frac{kN}{cm^{2}}}  </math>||
 
|-
 
| <math> a_{s,est} \approx 1,32 \frac{kNcm}{m}  </math>||
 
|}
 
 
gewählt: R188 ø6/15cm, <math>{{a}_{s}}= 1,88 \frac{cm^{2}}{m} </math>
 
 
====Querschnittsgeometrie m_{x,m}====
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
C_{nom,dur}  \\
 
C_{nom,b,Bü} \\
 
C_{nom,b,L}
 
\end{cases}</math><br /><br />
 
 
<br />
 
::{|
 
| <math> C_{nom,dur} = C_{min,dur} +  \Delta C_{dev} </math>|| <math>| mit: C_{min,dur} = 10 mm </math> für XC1
 
|-
 
| || <math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,dur} = 10 mm +  10 mm </math>||
 
|-
 
| <math> C_{nom,dur} = 20 mm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> C_{nom,b,Bü} = C_{min,b,Bü} +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,Bü} = 0 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,b,Bü} = 0 mm  +  10 mm    </math>||
 
|-
 
| <math> C_{nom,b,Bü} = 10 mm    </math>||
 
|}
 
 
 
<br />
 
::{|
 
| <math> C_{nom,b,L} = C_{min,b,L} - \varnothing bue +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,L} = 7 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm  </math>
 
|-
 
| ||<math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| <math> C_{nom,b,L} = 6 mm  - 0 mm +  \Delta 10 mm    </math>||
 
|-
 
| <math> C_{nom,b,L} = 16 mm    </math>||
 
|}
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
20 mm  \\
 
10 mm  \\
 
16 mm
 
\end{cases}</math><br /><br />
 
 
::{|
 
| <math> d_{1} = c_{v} + \varnothing bue + \frac{\varnothing L}{2}</math>|| <math>| mit: c_{v} = 20 mm </math>
 
|-
 
| || <math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| || <math>| mit: \varnothing L = 6 mm </math>
 
|-
 
| <math> d_{1} = 20 mm  + 0 mm  + \frac{6 mm}{2} </math>||
 
|-
 
| <math> d_{1} = 23,0 mm</math>||
 
|}
 
 
::{|
 
| <math> d = h_{L} - d_{1} </math>|| <math>| mit: d_{1} = 23 mm </math>
 
|-
 
| || <math>| mit: h_{L} = 200 mm </math>
 
|-
 
| <math> d = 200 mm - 23,0 mm </math>||
 
|-
 
| <math> d = 177 mm = 17,7 cm </math>||
 
|}
 
 
====Bemessung mit dem ω-Verfahren m_{x,m}====
 
 
 
::{|
 
|<math> z_{s} = d - \frac{h_{L} }{2} </math>|| <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: h_{L} = 20 cm </math>
 
|-
 
|<math> z_{s} = 17,7 cm  - \frac{20 cm}{2} </math>||
 
|-
 
|<math> z_{s} = 7,7 cm  </math>||
 
|}
 
 
::{|
 
|<math> M_{Eds} = M_{Ed,S} - extr n \cdot z_{s} </math>|| <math>| mit: z_{s} = 7,7 cm  </math>
 
|-
 
| || <math>| extr n = 0 </math>
 
|-
 
| ||<math>| mit: M_{Ed,S} = m_{x,m} =  859 \frac{kNcm}{m}  </math>
 
|-
 
|<math> M_{Eds} = 859 \frac{kNcm}{m}  - 0 \frac{kN}{m} \cdot 7,7 cm </math>||
 
|-
 
|<math> M_{Eds} = 859 \frac{kNcm}{m} </math>|| 
 
|}
 
 
 
::{|
 
|<math>  \mu_{Eds} = \frac{M_{Eds}}{b\cdot d^{2} \cdot  f_{cd}}    </math>|| <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: b = 100 cm </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}</math>
 
|-
 
| || <math>| mit: M_{Eds} =m_{x,m} = 859,0 \frac{kNcm}{m} </math>
 
|-
 
|<math>  \mu_{Eds} = \frac{859,0 \frac{kNcm}{m}}{100 cm \cdot (17,7 cm)^{2} \cdot  1,42 \frac{kN}{cm^{2}} }    </math>||
 
|-
 
|<math>  \mu_{Eds} = 0,0193  </math>||
 
|}
 
<br />
 
 
<br />
 
 
::{|
 
|<math> \omega = \omega_{1} + \frac{ \omega_{2} - \omega_{1} } { \mu_{Eds,2} - \mu_{Eds,1}} \cdot ( \mu_{Eds} - \mu_{Eds,1} ) </math>||
 
<math>| mit: \omega_{1} = 0,0101  </math>
 
|-
 
| || <math>| mit: \omega_{2} = 0,0203 </math>
 
|-
 
| || <math>| mit: \mu_{Eds} = 0,0193  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,1} = 0,01  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,2} = 0,02  </math>
 
|-
 
|<math> \omega = 0,0101 + \frac{ 0,0203 - 0,0101 } { 0,02  - 0,01 } \cdot ( 0,0193  - 0,01 )  </math>||
 
|-
 
|<math> \omega = 0,0196 </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
|<math>  a_{s,1} = \frac{1}{ \sigma_{sd}} \cdot ( \omega \cdot b \cdot d \cdot f_{cd} + N_{Ed} )  </math>|| <math>| mit: \omega = 0,0196  </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}  </math>
 
|-
 
| || <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: b = 100 cm  </math>
 
|-
 
| || <math>| mit: N_{Ed} = 0 </math>
 
|-
 
|<math>  a_{s,1} = \frac{1}{ 43,5 \frac{kN}{cm^{2}}} \cdot ( 0,0196 \cdot 100 cm \cdot 17,7 cm \cdot 1,42 \frac{kN}{cm^{2}} + 0 \frac{kN}{m}  )  </math>||
 
|-
 
|<math>  a_{s,1} = 1,13 \frac{cm^{2}}{m} </math>||
 
|}
 
 
gewählt: ø6/15cm, <math>{{a}_{s}}= 1,88 \frac{cm^{2}}{m} </math>
 
 
===Biegebemessung m_{y,m}===
 
 
gewählt: R188 ø6/15cm, <math>{{a}_{s}}= 1,88 \frac{cm^{2}}{m} </math>
 
 
===Biegebemessung  m_{x,r}===
 
 
====Vorbemessung  m_{x,r}====
 
::{|
 
| <math> z_{est} = 0,75 \cdot h  </math>||<math>| mit: h = h_{p} = 20 cm </math>
 
|-
 
| <math> z_{est} = 0,75 \cdot 20 cm </math>||
 
|-
 
| <math> z_{est} = 15 cm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> M_{Ed,est} = M_{Ed} - N_{Ed} \cdot z_{s1,est} </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: N_{Ed} = 0 \frac{kN}{m}</math>
 
|-
 
| ||<math>| mit: M_{Ed} = m_{x,m} = 16,64 \frac{kNm}{m} </math>
 
|-
 
| <math> M_{Ed,est} = 16,64\frac{kNm}{m}  - 0 \frac{kN}{m} \cdot 0,15 m </math>||
 
|-
 
| <math> M_{Ed,est} = 16,64 \frac{kNm}{m}</math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> a_{s,est} = \frac{M_{Ed,est}}{z_{s1,est} \cdot f_{yd} } + \frac{N_{Ed}}{f_{yd}}  </math>||<math>| mit: z_{s1,est} = 15 cm </math>
 
|-
 
| ||<math>| mit: f_{yd} = 43,5 \frac{kN}{cm^{2}} </math>
 
|-
 
| ||<math>| mit: N_{Ed} =  0 </math>
 
|-
 
| ||<math>| mit: M_{Ed,est} = 16,64 \frac{kNm}{m} </math>
 
|-
 
| <math> a_{s,est} = \frac{1664 \frac{kNcm}{m}}{15 cm \cdot 43,5 \frac{kN}{cm^{2}} } + \frac{0}{43,5 \frac{kN}{cm^{2}}}  </math>||
 
|-
 
| <math> a_{s,est} \approx 2,55 \frac{kNcm}{m}  </math>||
 
|}
 
 
gewählt: ø 8/15cm, <math>{{a}_{s}}= 3,35 \frac{cm^{2}}{m} </math>
 
 
====Querschnittsgeometrie  m_{x,r}====
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
C_{nom,dur}  \\
 
C_{nom,b,Bü} \\
 
C_{nom,b,L}
 
\end{cases}</math><br /><br />
 
 
<br />
 
::{|
 
| <math> C_{nom,dur} = C_{min,dur} +  \Delta C_{dev} </math>|| <math>| mit: C_{min,dur} = 10 mm </math> für XC1
 
|-
 
| || <math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,dur} = 10 mm +  10 mm </math>||
 
|-
 
| <math> C_{nom,dur} = 20 mm </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
| <math> C_{nom,b,Bü} = C_{min,b,Bü} +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,Bü} = 0 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm </math>
 
|-
 
| <math> C_{nom,b,Bü} = 0 mm  +  10 mm    </math>||
 
|-
 
| <math> C_{nom,b,Bü} = 10 mm    </math>||
 
|}
 
 
 
<br />
 
::{|
 
| <math> C_{nom,b,L} = C_{min,b,L} - \varnothing bue +  \Delta C_{dev}    </math>|| <math>| mit: C_{min,b,L} = 7 mm </math>
 
|-
 
| ||<math>| mit: \Delta C_{dev} = 10 mm  </math>
 
|-
 
| ||<math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| <math> C_{nom,b,L} = 8 mm  - 0 mm +  \Delta 10 mm    </math>||
 
|-
 
| <math> C_{nom,b,L} = 18 mm    </math>||
 
|}
 
 
:<math>c_{v}=\mathrm{max}\begin{cases}
 
20 mm  \\
 
10 mm  \\
 
16 mm
 
\end{cases}</math><br /><br />
 
 
::{|
 
| <math> d_{1} = c_{v} + \varnothing bue + \frac{\varnothing L}{2}</math>|| <math>| mit: c_{v} = 20 mm </math>
 
|-
 
| || <math>| mit: \varnothing bue = 0 mm </math>
 
|-
 
| || <math>| mit: \varnothing L = 8 mm </math>
 
|-
 
| <math> d_{1} = 20 mm  + 0 mm  + \frac{8 mm}{2} </math>||
 
|-
 
| <math> d_{1} = 24,0 mm</math>||
 
|}
 
 
::{|
 
| <math> d = h_{L} - d_{1} </math>|| <math>| mit: d_{1} = 24 mm </math>
 
|-
 
| || <math>| mit: h_{L} = 200 mm </math>
 
|-
 
| <math> d = 200 mm - 24,0 mm </math>||
 
|-
 
| <math> d = 176 mm = 17,6 cm </math>||
 
|}
 
 
====Bemessung mit dem ω-Verfahren  m_{x,r}====
 
 
 
::{|
 
|<math> z_{s} = d - \frac{h_{L} }{2} </math>|| <math>| mit: d = 17,6 cm  </math>
 
|-
 
| || <math>| mit: h_{L} = 20 cm </math>
 
|-
 
|<math> z_{s} = 17,6 cm  - \frac{20 cm}{2} </math>||
 
|-
 
|<math> z_{s} = 7,6 cm  </math>||
 
|}
 
 
::{|
 
|<math> M_{Eds} = M_{Ed} - extr n \cdot z_{s} </math>|| <math>| mit: z_{s} = 7,7 cm  </math>
 
|-
 
| || <math>| extr n = 0 </math>
 
|-
 
| ||<math>| mit: M_{Ed,S} = m_{x,m} =  1664 \frac{kNcm}{m}  </math>
 
|-
 
|<math> M_{Eds} = 1664 \frac{kNcm}{m}  - 0 \frac{kN}{m} \cdot 7,7 cm </math>||
 
|-
 
|<math> M_{Eds} = 1664 \frac{kNcm}{m} </math>|| 
 
|}
 
 
 
::{|
 
|<math>  \mu_{Eds} = \frac{M_{Eds}}{b\cdot d^{2} \cdot  f_{cd}}    </math>|| <math>| mit: d = 17,7 cm  </math>
 
|-
 
| || <math>| mit: b = 100 cm </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}</math>
 
|-
 
| || <math>| mit: M_{Eds} = 1664 \frac{kNcm}{m} </math>
 
|-
 
|<math>  \mu_{Eds} = \frac{1664 \frac{kNcm}{m}}{100 cm \cdot (17,7 cm)^{2} \cdot  1,42 \frac{kN}{cm^{2}} }    </math>||
 
|-
 
|<math>  \mu_{Eds} = 0,0378  </math>||
 
|}
 
<br />
 
 
<br />
 
 
::{|
 
|<math> \omega = \omega_{1} + \frac{ \omega_{2} - \omega_{1} } { \mu_{Eds,2} - \mu_{Eds,1}} \cdot ( \mu_{Eds} - \mu_{Eds,1} ) </math>||
 
<math>| mit: \omega_{1} = 0,0306  </math>
 
|-
 
| || <math>| mit: \omega_{2} = 0,0410  </math>
 
|-
 
| || <math>| mit: \mu_{Eds} = 0,0378  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,1} = 0,03  </math>
 
|-
 
| || <math>| mit: \mu_{Eds,2} = 0,04  </math>
 
|-
 
|<math> \omega = 0,0306 + \frac{ 0,0410 - 0,0306 } { 0,04  - 0,03 } \cdot ( 0,0378  - 0,03 )  </math>||
 
|-
 
|<math> \omega = 0,0387 </math>||
 
|}
 
<br />
 
 
<br />
 
::{|
 
|<math>  a_{sx,r} = \frac{1}{ \sigma_{sd}} \cdot ( \omega \cdot b \cdot d \cdot f_{cd} + N_{Ed} )  </math>|| <math>| mit: \omega = 0,0306  </math>
 
|-
 
| || <math>| mit: f_{cd} = 1,42 \frac{kN}{cm^{2}}  </math>
 
|-
 
| || <math>| mit: d = 17,6 cm  </math>
 
|-
 
| || <math>| mit: b = 100 cm  </math>
 
|-
 
| || <math>| mit: N_{Ed} = 0 </math>
 
|-
 
|<math>  a_{sx,r} = \frac{1}{ 43,5 \frac{kN}{cm^{2}}} \cdot ( 0,0387 \cdot 100 cm \cdot 17,6 cm \cdot 1,42 \frac{kN}{cm^{2}} + 0 \frac{kN}{m}  )  </math>||
 
|-
 
|<math>  a_{sx,r} = 2,20 \frac{cm^{2}}{m} </math>||
 
|}
 
 
gewählt: ø8 / 20cm, <math> a_{sx,r} = 2,51 \frac{cm^{2}}{m} </math>
 
 
 
<br />
 
::{|
 
|<math>  a_{sy,r} = 0,2 \cdot a_{sx,r} </math>|| <math>| mit: a_{sx,r} = 2,20 \frac{cm^{2}}{m}  </math>
 
|-
 
|<math>  a_{sy,r} = 0,2 \cdot 2,20 \frac{cm^{2}}{m}  </math>||
 
|-
 
|<math>  a_{sy,r} = 0,44 \frac{cm^{2}}{m}  </math>||
 
|}
 
 
gewählt: ø6 / 25cm, <math>a_{sy,r}= 1,13 \frac{cm^{2}}{m} </math>
 
 
===Querkraftbemessung===
 
 
====Bauteile ohne Querkraftbewehrung====
 
 
::{|
 
|<math> V_{Ed} =  42,61 \frac{kN}{m^{2}}  </math>||
 
|}
 
 
 
 
::{|
 
|<math> C_{Rdc} = \frac{0,15}{\gamma_{c}}  </math>||<math>| mit: \gamma_{c} = 1,5</math>
 
|-
 
|<math> C_{Rdc} = \frac{0,15}{1,5}  </math>||
 
|-
 
|<math> C_{Rdc} = 0,1  </math>||
 
|}
 
 
 
 
 
 
::{|
 
|<math> k=1+\sqrt{\frac{200}{d}}  </math>|| <math>\begin{cases}
 
\ge 1,0  \\
 
\le 2,0
 
\end{cases}</math>
 
|-
 
| || <math>| mit: d = 176 mm </math>
 
|-
 
|<math>k=1+\sqrt{\frac{200}{176}}</math> ||
 
|-
 
|<math>k=2,07</math> || <math>\begin{cases}
 
\ge 1,0  \\
 
\ge 2,0
 
\end{cases}</math>
 
|-
 
|<math>k=2</math> ||
 
|}
 
 
 
 
 
 
 
::{|
 
|<math> \rho_{l} = \frac{A_{sl}}{b_{w} \cdot d} </math>||<math> \le 0,02 </math>
 
|-
 
| || <math>| mit: A_{sl} = a_{sx,r} = 2,51 \frac{cm^{2}}{m}  </math>
 
|-
 
| || <math>| mit: b_{w} = 100 cm </math>
 
|-
 
| || <math>| mit: d = 17,7 cm</math>
 
|-
 
|<math> \rho_{l} = \frac{2,51 \frac{cm^{2}}{m} }{100 cm \cdot 17,7 cm }</math>||
 
|-
 
|<math> \rho_{l} =1,48 \cdot 10^{-3}  </math>||<math> \le 0,02 </math>
 
|}
 
 
 
 
::{|
 
|<math> A_{c} = A - A_{s} </math>|| <math>| mit: A =  b_{w} \cdot h_{L} =  b_{w} \cdot h_{L} =1000 mm \cdot 200 mm = 200000 </math>
 
|-
 
| || <math>| mit: A_{s, a_{sx,r},  a_{sy,r}} = 251 \frac{mm^{2}}{m} + 113 \frac{mm^{2}}{m} = 364 \frac{mm^{2}}{m} </math>
 
|-
 
|<math> A_{c} = 200000 mm^{2} - 364 mm^{2} </math>||
 
|-
 
|<math> A_{c} = 199636 mm^{2}  </math>||
 
|}
 
 
 
 
::{|
 
|<math> \sigma_{cp}=\frac{ N_{Ed} }{ A_{c} } </math> || <math>| mit: N_{Ed} = 0 \frac{N}{m}  </math>
 
|-
 
| || <math>| mit: A_{c} = 199636 mm^{2}</math>
 
|-
 
|<math> \sigma_{cp}=\frac{ 0 \frac{N}{m} }{ 199636 mm^{2} } </math> ||
 
|-
 
|<math> \sigma_{cp} = 0 \frac{N}{m \cdot mm^{2}} </math> ||
 
|}
 
 
 
 
 
::{|
 
|<math> V_{Rd,c}= \left[ C_{Rdc} \cdot k \cdot \left( 100 \cdot \rho_{l} \cdot f_{ck} \right)^{\frac{1}{3}} + 0,12 \cdot \sigma_{cp} \right] \cdot b_{w} \cdot d </math> || <math>| mit: \sigma_{cp} =  0 \frac{N}{ mm^{2}}  </math>
 
|-
 
| ||<math>| mit: \rho_{l} = 1,48 \cdot 10^{-3} </math>
 
|-
 
| ||<math>| mit: k=2 </math>
 
|-
 
| ||<math>| mit:  C_{Rdc} = 0,1  </math>
 
|-
 
| ||<math>| mit:  f_{ck} = 25 \frac{kN}{cm^{2}}  </math>
 
|-
 
| ||<math>| mit:  b_{w} = 1000 mm </math>
 
|-
 
| ||<math>| mit:  d = 176 mm  </math>
 
|-
 
|<math> V_{Rd,c}= \left[ 0,1  \cdot 2 \cdot \left( 100 \cdot 1,48 \cdot 10^{-3} \cdot 25 \frac{N}{mm^{2}} \right)^{\frac{1}{3}} + 0,12 \cdot 0 \frac{N}{mm^{2}} \right] \cdot 1000 mm \cdot 176 mm </math> ||
 
|-
 
|<math> V_{Rd,c}=  54443 N</math> ||<math>\ge V_{Ed}</math>
 
|-
 
|<math> V_{Rd,c}=  54,44 kN </math> ||<math>\ge 42,61 \frac{kN}{m^{2}}  </math>
 
|}
 
 
Weitere Bemessung Hinsichtlich der Querkraft für dieses Bauteil nicht erforderlich da der Nachweis erfüllt ist .
 
 
== Bemessung im Grenzzustand der Gebrauchs==
 
=== Begrenzung der Biegeschlankheit des Treppenlauf===
 
 
:{|
 
|<math> \frac{l}{d} \leq  K \left[ 11 + 1,5 \cdot \sqrt{ f_{ck}} \cdot \frac{\rho_{0} }{\rho} + 3,2 \cdot \sqrt{ f_{ck}} \cdot  (\frac{\rho_{0} }{\rho} -1 )^{3/2}  \right] \leq \left( \frac{l}{d} \right)_{max}  </math>|| ||| für: <math> \rho \le \rho_{0} </math>
 
|-
 
|<math> \frac{l}{d} \leq  K \left[ 11 + 1,5 \sqrt{ f_{ck}} \cdot \frac{\rho_{0} }{\rho - \rho_{'}}  + \frac{1}{12} \cdot \sqrt{ f_{ck}}  \cdot (\frac{  \rho_{'}}{\rho_{0}})^{1/2} \right] \leq \left( \frac{l}{d} \right)_{max}  </math>|| |||für: <math> \rho > \rho_{0} </math>
 
|}
 
 
 
::{|
 
|<math> \rho_{0} =  10^{-3} \cdot \sqrt{ f_{ck}} </math>||<math>| mit: f_{ck}  = 25 \frac{N}{mm^{2}} </math>
 
|-
 
|<math> \rho_{0} =  10^{-3} \cdot \sqrt{25 \frac{N}{mm^{2}}} </math>||
 
|-
 
|<math> \rho_{0} = 5 \cdot 10^{-3} </math>||
 
|}
 
 
 
::{|
 
|<math> \rho =  \frac{A_{s1}}{b \cdot d} </math>||<math>| mit: A_{s1}  = 2,57 \frac{cm^{2}}{m}  </math>
 
|-
 
| ||<math>| mit: d = 17,3 cm  </math>
 
|-
 
| ||<math>| mit: b = 100 cm </math>
 
|-
 
|<math> \rho =  \frac{2,57 \frac{cm^{2}}{m} }{100 cm \cdot 17,3 cm} </math>||
 
|-
 
|<math> \rho = 1,49 \cdot 10^{-3} </math>|| <math>\le \rho_{0} </math>
 
|}
 
 
 
:{|
 
|<math> \frac{l}{d} \leq  K \left[ 11 + 1,5 \cdot \sqrt{ f_{ck}} \cdot \frac{\rho_{0} }{\rho} + 3,2 \cdot \sqrt{ f_{ck}} \cdot  (\frac{\rho_{0} }{\rho} -1 )^{3/2}  \right] \leq \left( \frac{l}{d} \right)_{max}  </math>||
 
|}
 
 
 
:{|
 
|<math> \left( \frac{l}{d} \right)_{vorh} = \frac{l}{d}  </math>||<math>| mit:  d = 0,173 m  </math>
 
|-
 
| ||<math>|mit:  l =  \sqrt{ (8 \cdot 0,29m)^{2} + (8 \cdot 0,17m)^{2} } = 2,69 m </math>
 
|-
 
|<math> \left( \frac{l}{d} \right)_{vorh} = \frac{2,69 m}{0,173 m}  </math>||
 
|-
 
|<math> \left( \frac{l}{d} \right)_{vorh} = 15,55  </math>||
 
|}
 
 
 
:{|
 
|<math> \frac{l}{d}_{zul} = K \left[ 11 + 1,5 \cdot \sqrt{ f_{ck}} \cdot \frac{\rho_{0} }{\rho} + 3,2 \cdot \sqrt{ f_{ck}} \cdot  (\frac{\rho_{0} }{\rho} -1 )^{3/2}  \right] </math>||<math>| mit:  K_{Innenfeld} = 1,5  </math>
 
|-
 
| ||<math>| mit: f_{ck}  = 25 \frac{N}{mm^{2}}  </math>
 
|-
 
| ||<math>| mit: \rho = 1,49 \cdot 10^{-3}  </math>
 
|-
 
| ||<math>| mit: \rho_{0} = 5 \cdot 10^{-3}  </math>
 
|-
 
|<math> \frac{l}{d}_{zul} = 1,5 \left[ 11 + 1,5 \cdot \sqrt{ 25 \frac{N}{mm^{2}}} \cdot \frac{5 \cdot 10^{-3} }{1,49 \cdot 10^{-3}} + 3,2 \cdot \sqrt{ 25 \frac{N}{mm^{2}}} \cdot  (\frac{5 \cdot 10^{-3}}{1,49 \cdot 10^{-3}} -1 )^{3/2}  \right] </math>||
 
|-
 
|<math> \frac{l}{d}_{zul} = 155.64 </math>||<math> \ge \left( \frac{l}{d} \right)_{vorh} </math>
 
|}
 
 
 
 
 
 
 
:<math>\left( \frac{l}{d} \right)_{max} \le \begin{cases}
 
K \cdot 35  \\
 
K^{2} \cdot \frac{150}{l}
 
\end{cases}</math><br /><br />
 
 
 
 
:{|
 
|<math> \left( \frac{l}{d} \right)_{max} K \cdot 35  </math>||<math>| mit:  K_{Innenfeld} = 1,5  </math>
 
|-
 
|<math> \left( \frac{l}{d} \right)_{max} = 1,5 \cdot 35  </math>||
 
|-
 
|<math> \left( \frac{l}{d} \right)_{max} = 52,5  </math>||<math> \ge \left( \frac{l}{d} \right)_{vorh} </math>
 
|}
 
 
 
 
 
 
:{|
 
|<math> \left( \frac{l}{d} \right)_{max} = K^{2} \cdot \frac{150}{l}  </math>||<math>| mit:  K_{Innenfeld} = 1,5  </math>
 
|-
 
| ||<math>| mit:  l =  \sqrt{ (8 \cdot 0,29m)^{2} + (8 \cdot 0,17m)^{2} } = 2,69 m </math>
 
|-
 
|<math> \left( \frac{l}{d} \right)_{max} = 1,5^{2} \cdot \frac{150}{2,69 m}  </math>||
 
|-
 
|<math> \left( \frac{l}{d} \right)_{max} = 125, 46</math>||<math> \ge \left( \frac{l}{d} \right)_{vorh} </math>
 
|}
 
 
=Berechnung und Bemessung des Zwischenpodest Hauptpodest=
 
Das Hauptpodest wird als zweiseitig gelagert also einachsig gespannt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==''Quellen''==
 
:''Normen''
 
<references group="N" /><br />
 
<br />
 
:''Fachliteratur''
 
<references group="F" /><br />
 
<br />
 
:''Links''
 
<references group="L" />
 
<br />
 
 
 
 
{{Seiteninfo
 
|Quality-flag = [[File:quality-flag-white.gif|right|70px]]
 
|Status = Seite in Bearbeitung}}
 
[[Kategorie:Grundlagen/Begriffe-Stahlbetonbau]]-Stahlbetonbau]]
 

Aktuelle Version vom 3. April 2019, 20:11 Uhr