Stahlbetonstütze - Verfahren mit Nennsteifigkeit (Bsp.): Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „Diese Seite ist noch in Bearbeitung. == Aufgabenstellung == Platzhalter für Aufgabe == Handrechnung == === Schnittgrößen nach Theorie I. Ordnung === <m…“) |
|||
| Zeile 53: | Zeile 53: | ||
| − | ==== Flächenträgheitsmoment des Betons | + | ==== Flächenträgheitsmoment des Betons ==== |
| − | <math>I_c = \frac{b \cdot h^3}{} | + | <math>I_c = \frac{b \cdot h^3}{12} = \frac{35 cm \cdot (35 cm)^2}{12} = 125.052 cm^4 |
| + | </math> | ||
| + | |||
| + | |||
| + | Planmäßige Lastausmitte und Lastausmitte aus Imperfektionen | ||
| + | |||
| + | <math>e_0 = 0 cm | ||
| + | </math> | ||
| + | |||
| + | <math>{\alpha}_h = \frac{2}{\sqrt{l}} = \frac{2}{\sqrt{6,0}} = 0,816 | ||
| + | </math> | ||
| + | |||
| + | <math>{\theta}_i = \frac{1}{200} \cdot {\alpha}_h = \frac{1}{200} \cdot 0,816 = \frac{1}{245} | ||
| + | </math> | ||
| + | |||
| + | <math>e_i = {\theta}_i \cdot \frac{l_0}{2} = \frac{1}{245} \cdot \frac{600 cm}{2} = 1,22 cm | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ==== Vorbemessung ==== | ||
| + | |||
| + | ===== Wirksame Bauteildicke ===== | ||
| + | |||
| + | <math>h_0 = \frac{2 \cdot A_c}{u} = \frac{2 \cdot (35 cm)^2}{4 \cdot 35 cm} | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ===== Endkriechzahl ===== | ||
| + | |||
| + | Erstbelastung des Betons: <math>t_0 = 28 </math> Tage | ||
| + | |||
| + | Bauteil in Innenräumen, trockene Umgebungsbedingungen | ||
| + | |||
| + | <math>{\phi}_{\infty, t0} = 2,8</math> nach Schneider 5.33 | ||
| + | |||
| + | |||
| + | ===== Moment mit Imperfektionen in quasi-ständiger und GZT-Kombination ===== | ||
| + | |||
| + | <math>M_{1,perm} = (|N_{Gk}| + {\psi}_2 \cdot |N_{Qk}|) \cdot e_i = (1.250 kN + 0,6 \cdot 750 kN) \cdot 0,0122 m = 20,74 kNm | ||
| + | </math> | ||
| + | |||
| + | <math>M_{1,Ed} = ({\gamma}_{Gk} \cdot |N_{Gk}| + {\gamma}_{Qk} \cdot |N_{Qk}|) \cdot e_i = (1,35 \cdot 1.250 kN + 1,5 \cdot 750 kN) \cdot 0,0122 m = 34,31 kNm | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ===== Effektive Kriechzahl ===== | ||
| + | |||
| + | <math>{\phi}_{ef} = {\phi}_{\infty, t0} \cdot \frac{M_{1,perm}}{M_{Ed}} = 2,8 \cdot \frac{20,74 kNm}{34,31 kNm} = 1,69 | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ===== Steifigkeitsbeiwerte nach einfacher Formel ===== | ||
| + | |||
| + | <math>K_s = 0 | ||
| + | </math> | ||
| + | |||
| + | <math>K_c = \frac{0,3}{(1 + 0,5 \cdot {\phi}_{ef}} = \frac{0,3}{(1 + 0,5 \cdot 1,69} = 0,163 | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ===== Vorläufige Nennsteifigkeit ===== | ||
| + | |||
| + | <math>EI = K_c \cdot E_{cd} \cdot I_c + K_s \cdot E_s \cdot I_s = 0,163 \cdot 2.066,7 kN/cm^2 \cdot 125.052 cm^4 + 0 = 42.126.530 kNcm^2 | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ===== Knicklast ===== | ||
| + | |||
| + | <math> N_B = \frac{EI \cdot \pi^2}{l_0^2} = \frac{42.126.530 kNcm^2 \cdot \pi^2}{(600 cm)^2} = 1.154,9 kN | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ====== Beiwert für den Momentenverlauf ===== | ||
| + | |||
| + | Das Moment stammt aus der Lastausmitte <math>e_i</math> für Imperfektionen. Hierbei handelt es sich um eine ungewollte Schiefstellung der Stütze, deshalb ist der Momentenverlauf dreieckig, damit gilt <math>c_0 = 12</math>. | ||
| + | |||
| + | Platzhalter für Bild Schiefstellung | ||
| + | |||
| + | <math>\beta = \frac{\pi^2}{c_0} = \frac{\pi^2}{12} = 0,822 | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ===== Vorläufiges Moment nach Theorie II. Ordnung ===== | ||
| + | |||
| + | <math>M_{Ed} = M{0Ed} \cdot (1 + \frac{\beta}{N_B/N_{Ed} - 1}) = 3.431 kNcm \cdot (1 + \frac{0,822}{1.154,9 kN / 2.812,5 kN - 1}) = 3.431 kNcm = 3.431 kNcm \ cdot (-0,39) | ||
| + | </math> | ||
| + | |||
| + | Der Beiwert zur Erhöhung des Moments nach Theorie I. Ordnung ist negativ geworden, weil die Knicklast <math>N_B</math> kleiner ist als die einwirkende Normalkraft <math>N_{Ed}</math>. Damit liefert die Formel kein brauchbares Ergebnis. Die Vorbemessung muss deshalb mit alternativem Ansatz durchgeführt werden. | ||
| + | |||
| + | <math>M_{Ed} = |N_{Ed}| \cdot \frac{h}{20} = |- 2.812,5 kN| \cdot \frac{35 cm}{20} = 4.922 kNcm = 49,22 kNm | ||
| + | </math> | ||
| + | |||
| + | <math>c_{nom} = c_{min} + \delta c_{dev} = 10 mm + 10 mm = 20 mm | ||
| + | </math> | ||
| + | |||
| + | <math>d_1 = c_{nom} + {\O}_{s,Bu} + {\O}_{s,L}/2 = 2,0 + 1,0 + 2,0/2 = 4,0 cm | ||
| + | </math> | ||
| + | |||
| + | <math>d = h - d_1 = 35 cm - 4 cm = 31 cm | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ===== Vorbemessung mit Bewehrungswahl ===== | ||
| + | |||
| + | <math>\frac{d_1}{h} = \frac{4 cm}{35 cm} = 0,11 \approx 0,10 | ||
| + | </math> | ||
| + | |||
| + | <math>{\mu}_{Ed} = \frac{M_{Ed}}{b \cdot h^2 \cdot f_{cd}} = \frac{4.922 kNcm}{35 cm \cdot (35 cm)^2 \cdot 1,42 kN/cm^2} = 0,081 | ||
| + | </math> | ||
| + | |||
| + | <math>{\nu}_{Ed} = \frac{N_{Ed}}{b \cdot h \cdot f_{cd}} = \frac{- 2.812,5 kN}{35 cm \cdot 35 cm \cdot 1,42 kN/cm^2} = - 1,62 | ||
| + | </math> | ||
| + | |||
| + | → Ermittlung des Bewehrungsgrads durch Interaktionsdiagramm für umfangsverteilte Bewehrung (Quelle) | ||
| + | |||
| + | <math>{\omega}_{tot} = 0,865 | ||
| + | </math> | ||
| + | |||
| + | <math>A_{s,tot} = {\omega}_{tot} \cdot b \cdot h \cdot \frac{f_{cd}}{f{yd}} = 0,865 \cdot 35 cm \cdot 35 cm \cdot \frac{1,42 kN/cm^2}{43,5 kN/cm^2} = 34,59 cm^2 | ||
| + | </math> | ||
| + | |||
| + | Gewählt: <math>12 \O 20 mm</math> mit <math>A_{s,vorh} = 37,68 cm^2</math> | ||
| + | |||
| + | |||
| + | ==== Genauere Steifigkeitsbeiwerte ==== | ||
| + | |||
| + | <math>K_s = 1 | ||
| + | </math> | ||
| + | |||
| + | <math>k_1 = \sqrt{f_{ck}/20} = \sqrt{25/20} = 1,12 | ||
| + | </math> | ||
| + | |||
| + | <math>k_2 = {\nu}_{Ed} \cdot \frac{\lambda}{170} = 1,62 \cdot \frac{59,38}{170} = 0,57 \leq \textbf{0,20} | ||
| + | </math> | ||
| + | |||
| + | <math>K_c = \frac{k_1 \cdot k_2}{(1 + {\phi}_{ef}} = \frac{1,12 \cdot 0,20}{(1 + 1,69} = 0,083 | ||
| + | </math> | ||
| + | |||
| + | |||
| + | ==== Flächenträgheitsmoment der Bewehrung ==== | ||
| + | |||
| + | Platzhalter für Skizze | ||
| + | |||
| + | Insgesamt <math>12 \O 20 mm</math> | ||
| + | |||
| + | <math> | ||
| + | </math> | ||
| + | |||
| + | <math> | ||
| + | </math> | ||
| + | |||
| + | <math> | ||
| + | </math> | ||
| + | |||
| + | <math> | ||
</math> | </math> | ||
Version vom 12. Februar 2022, 14:27 Uhr
Diese Seite ist noch in Bearbeitung.
Aufgabenstellung
Platzhalter für Aufgabe
Handrechnung
Schnittgrößen nach Theorie I. Ordnung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{Ed} = {\gamma}_G \cdot N_{Gk} + {\gamma}_Q \cdot N_{Qk} = 1,35 \cdot (-1250 kN) + 1,5 \cdot \cdot (-750 kN) = -2.812,5 kN}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Ed,y,I} = M_{Ed,z,I} = 0 kNm}
Knicklänge
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{col} = 6,00 m}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta = 1,0} für das gegebene statische System (Pendelstütze)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_0 = \beta \cdot l_{col} = 1,0 \cdot 6,00 m = 6,00 m}
Schlankheit und Überprüfung der Notwendigkeit des Nachweises nach Theorie II. Ordnung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda = \frac{l_0}{\sqrt{\frac{I}{A}}} = \frac{600 cm}{35 cm / \sqrt{12}}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_{Ed} = \frac{N_{Ed}}{b \cdot h \cdot f_{cd}} = \frac{- 2.812,5 kN}{35 cm \cdot 35 cm \cdot 1,42 kN/cm^2} = - 1,62 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\lambda}_{crit} = \frac{16}{\sqrt{|v_{Ed}}} = \frac{16}{\sqrt{- 1,62}} = 12,57 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\lambda}_{vorh} > max(25; \frac{16}{\sqrt{|v_{Ed}}}) }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 59,38 > 25 }
Es ist ein Nachweis nach Theorie II. Ordnung nötig.
Nennsteifigkeit
E-Moduln
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_{cd} = \frac{E_{cm}}{{\gamma}_{CE}} = \frac{31.000 N/mm^2}{1,5} = 20.667 N/mm^2 = 2.066,7 kN/cm^2 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_s = 200.000 N/mm^2 }
Flächenträgheitsmoment des Betons
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_c = \frac{b \cdot h^3}{12} = \frac{35 cm \cdot (35 cm)^2}{12} = 125.052 cm^4 }
Planmäßige Lastausmitte und Lastausmitte aus Imperfektionen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e_0 = 0 cm }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\alpha}_h = \frac{2}{\sqrt{l}} = \frac{2}{\sqrt{6,0}} = 0,816 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\theta}_i = \frac{1}{200} \cdot {\alpha}_h = \frac{1}{200} \cdot 0,816 = \frac{1}{245} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e_i = {\theta}_i \cdot \frac{l_0}{2} = \frac{1}{245} \cdot \frac{600 cm}{2} = 1,22 cm }
Vorbemessung
Wirksame Bauteildicke
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_0 = \frac{2 \cdot A_c}{u} = \frac{2 \cdot (35 cm)^2}{4 \cdot 35 cm} }
Endkriechzahl
Erstbelastung des Betons: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_0 = 28 } Tage
Bauteil in Innenräumen, trockene Umgebungsbedingungen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\phi}_{\infty, t0} = 2,8} nach Schneider 5.33
Moment mit Imperfektionen in quasi-ständiger und GZT-Kombination
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{1,perm} = (|N_{Gk}| + {\psi}_2 \cdot |N_{Qk}|) \cdot e_i = (1.250 kN + 0,6 \cdot 750 kN) \cdot 0,0122 m = 20,74 kNm }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{1,Ed} = ({\gamma}_{Gk} \cdot |N_{Gk}| + {\gamma}_{Qk} \cdot |N_{Qk}|) \cdot e_i = (1,35 \cdot 1.250 kN + 1,5 \cdot 750 kN) \cdot 0,0122 m = 34,31 kNm }
Effektive Kriechzahl
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\phi}_{ef} = {\phi}_{\infty, t0} \cdot \frac{M_{1,perm}}{M_{Ed}} = 2,8 \cdot \frac{20,74 kNm}{34,31 kNm} = 1,69 }
Steifigkeitsbeiwerte nach einfacher Formel
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_s = 0 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c = \frac{0,3}{(1 + 0,5 \cdot {\phi}_{ef}} = \frac{0,3}{(1 + 0,5 \cdot 1,69} = 0,163 }
Vorläufige Nennsteifigkeit
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle EI = K_c \cdot E_{cd} \cdot I_c + K_s \cdot E_s \cdot I_s = 0,163 \cdot 2.066,7 kN/cm^2 \cdot 125.052 cm^4 + 0 = 42.126.530 kNcm^2 }
Knicklast
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_B = \frac{EI \cdot \pi^2}{l_0^2} = \frac{42.126.530 kNcm^2 \cdot \pi^2}{(600 cm)^2} = 1.154,9 kN }
= Beiwert für den Momentenverlauf
Das Moment stammt aus der Lastausmitte für Imperfektionen. Hierbei handelt es sich um eine ungewollte Schiefstellung der Stütze, deshalb ist der Momentenverlauf dreieckig, damit gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_0 = 12} .
Platzhalter für Bild Schiefstellung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta = \frac{\pi^2}{c_0} = \frac{\pi^2}{12} = 0,822 }
Vorläufiges Moment nach Theorie II. Ordnung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Ed} = M{0Ed} \cdot (1 + \frac{\beta}{N_B/N_{Ed} - 1}) = 3.431 kNcm \cdot (1 + \frac{0,822}{1.154,9 kN / 2.812,5 kN - 1}) = 3.431 kNcm = 3.431 kNcm \ cdot (-0,39) }
Der Beiwert zur Erhöhung des Moments nach Theorie I. Ordnung ist negativ geworden, weil die Knicklast Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_B} kleiner ist als die einwirkende Normalkraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{Ed}} . Damit liefert die Formel kein brauchbares Ergebnis. Die Vorbemessung muss deshalb mit alternativem Ansatz durchgeführt werden.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Ed} = |N_{Ed}| \cdot \frac{h}{20} = |- 2.812,5 kN| \cdot \frac{35 cm}{20} = 4.922 kNcm = 49,22 kNm }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_{nom} = c_{min} + \delta c_{dev} = 10 mm + 10 mm = 20 mm }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_1 = c_{nom} + {\O}_{s,Bu} + {\O}_{s,L}/2 = 2,0 + 1,0 + 2,0/2 = 4,0 cm }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d = h - d_1 = 35 cm - 4 cm = 31 cm }
Vorbemessung mit Bewehrungswahl
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{d_1}{h} = \frac{4 cm}{35 cm} = 0,11 \approx 0,10 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\mu}_{Ed} = \frac{M_{Ed}}{b \cdot h^2 \cdot f_{cd}} = \frac{4.922 kNcm}{35 cm \cdot (35 cm)^2 \cdot 1,42 kN/cm^2} = 0,081 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\nu}_{Ed} = \frac{N_{Ed}}{b \cdot h \cdot f_{cd}} = \frac{- 2.812,5 kN}{35 cm \cdot 35 cm \cdot 1,42 kN/cm^2} = - 1,62 }
→ Ermittlung des Bewehrungsgrads durch Interaktionsdiagramm für umfangsverteilte Bewehrung (Quelle)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\omega}_{tot} = 0,865 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,tot} = {\omega}_{tot} \cdot b \cdot h \cdot \frac{f_{cd}}{f{yd}} = 0,865 \cdot 35 cm \cdot 35 cm \cdot \frac{1,42 kN/cm^2}{43,5 kN/cm^2} = 34,59 cm^2 }
Gewählt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 12 \O 20 mm} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,vorh} = 37,68 cm^2}
Genauere Steifigkeitsbeiwerte
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_s = 1 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_1 = \sqrt{f_{ck}/20} = \sqrt{25/20} = 1,12 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_2 = {\nu}_{Ed} \cdot \frac{\lambda}{170} = 1,62 \cdot \frac{59,38}{170} = 0,57 \leq \textbf{0,20} }
Flächenträgheitsmoment der Bewehrung
Platzhalter für Skizze
Insgesamt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 12 \O 20 mm}