Durchstanzen - Korrekturfaktor β: Unterschied zwischen den Versionen
Zeile 10: | Zeile 10: | ||
{{Lesernavigation 4 Links | {{Lesernavigation 4 Links | ||
− | |Link1 = [[ | + | |Link1 = [[:Kategorie:Grundlagen/Begriffe-Stahlbetonbau|Grundlagen/Begriffe]] |
− | |Link2 = [[ | + | |Link2 = [[Durchstanzen]] |
− | |Link3 = [[ | + | |Link3 = [[Durchstanzen (Korrekturfaktor β)]] |
− | |Link4 = [[Durchstanzen]] | + | |Link4 = [[Durchstanzen (Lasteinleitungsfläche und kritischer Rundschnitt)]] |
}} | }} | ||
<br /> | <br /> |
Version vom 11. Dezember 2015, 15:21 Uhr
Hauptseite • Stahlbetonbau • Grundlagen/Begriffe • Hinweise für Leser • Hinweise für Autoren |
Grundlagen/Begriffe • Durchstanzen • Durchstanzen (Korrekturfaktor β) • Durchstanzen (Lasteinleitungsfläche und kritischer Rundschnitt) |
Korrekturfaktor β
- nach EC 2-1-1, 6.4.3.(6)
Infolge von Biegung ist die aufgebrachte Querkraft nicht mehr gleichmäßig über den Umfang verteilt, die Belastung einer Seite ist folglich erhöht. Der Lasterhöhungsfaktor β berücksichtigt diesen Umstand[1].
Zur Ermittlung des Faktors β stehen drei Verfahren zur Verfügung.
Diese werden folgend erläutert:
Konstanter Faktor für ausgesteifte Systeme mit nahezu gleichen Stützweiten
Es werden horizontal unverschiebliche, ausgesteifte Systeme mit Stützweitenunterschieden
von maximal 25 % und eine Belastung durch Gleichlast angenommen [2]. Die Stützweitenverhältnisse betragen somit [3].
Für diesen Fall können somit folgende konstante Näherungswerte angenommen werden(siehe Bild 10):
- 1,10 Innenstützen
- 1,40 Randstützen
- 1,35 Wandenden (NA)
- 1,50 Eckstützen
- 1,20 Wandecken (NA)
- Bei Fundamenten wird ein angenommen.
Ermittlung über Sektormodell
Im ersten Schritt sind die Querkraftnulllinien anzusätzen. Diese werden abgeschätzt
oder errechnet (linear-elastisch). Anschließend findet eine Unterteilung
der Lasteinzugsfläche in i-Lasteinleitungssektoren (siehe Bild) statt.
Hierbei sollten mindestens 3-4 Sektoren pro Quadrant betrachtet werden [4].
.
Der Lasterhöhungsfaktor ergibt sich somit wie folgt [5]:
Genaueres Verfahren
nach EC 2-1-1, 6.4.3 (1;2)
Sind die oben genannten Voraussetzungen nicht erfüllt oder ist die bezogene Ausmitte bei Randstützen größer als 1,2 (wobei c die Stützenabmessung in Richtung der Ausmitte darstellt), ist der Lasterhöhungsfaktor mit genaueren Verfahren
zu ermitteln. Hierbei wird die Annahme einer vollplastischen Schubspannungsverteilung am kritischen Rundschnitt getroffen [6].
Die Gleichung lautet somit wie folgt:
mit
und somit bei einer geschlossenen Rechteckstütze mit c1 parallel und c2 senkrecht zur Lastausmitte:
und dem Beiwert k
Bei Decken-Stützenknoten mit zweiachsiger Ausmitte gilt (NA)[5]:
Quellen
- ↑ Prof. Dipl.-Ing. Frank Prietz. Durchstanzen nach DIN EN 1992-1-1 +NA.Skript
- ↑ Dipl.-Ing. Klaus Beer. Bewehren nach DIN EN 1992-1-1(EC2). Vieweg+Teubner, S. 196-207, 3. Aufl. edition, 2012
- ↑ G. Zehetmaier K. Zilch. Bemessung im konstruktiven Betonbau. Springer, S.313-361, 2. Aufl. edition, 2010
- ↑ K. Zilch F. Fingerloos, J. Hegger. Eurocode 2 für Deutschland. Ernst + Sohn, Beuth-Verlag, S. 263-281, 1. Aufl. edition, 2012
- ↑ 5,0 5,1 5,2 Prof. Dr.-Ing. Rudolf Baumgart. Durchstanznachweis nach EC 2. Skript Hochschule Darmstadt-University of Applied Sciences, 2012
- ↑ Prof. Dr-Ing. Jens Minnert. Durchstanzen nach EC 2-1-1 und EC 2-1-1/NA. mb AEC- Fit für den Eurocode, 2012
Seiteninfo
|