Bemessung eines Randstreifenfundaments (Bsp.): Unterschied zwischen den Versionen

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen
Zeile 49: Zeile 49:
 
;Gesuchte Größen
 
;Gesuchte Größen
 
<br />
 
<br />
:<math>\sigma_{2} = \frac{\frac{2}{3} \cdot b^{2} - c \cdot b + \delta + \alpha}{\frac{b^{2}}{6} + \delta + \alpha} \cdot \gamma = \frac{\frac{2}{3} \cdot 50,0^{2} - 15,0 \cdot 50,0 + 701,18 + 11739,13}{\frac{50,0^{2}}{6} + 701,18 + 11739,13} \cdot 0,014796 = 0,015659 kN/cm^{2}</math>
+
:<math>\sigma_{2} = \frac{\frac{2}{3} \cdot b^{2} - c \cdot b + \delta + \alpha}{\frac{b^{2}}{6} + \delta + \alpha} \cdot \gamma = \frac{\frac{2}{3} \cdot 50,0^{2} - 15,0 \cdot 50,0 + 701,18 + 11739,13}{\frac{50,0^{2}}{6} + 701,18 + 11739,13} \cdot 0,014796 = 0,015659\ kN/cm^{2} \underline{\underline{= 156,59\ kN/m^{2}}}</math>
 +
<br />
 +
:<math>\sigma_{1} = 2 \cdot \gamma - \sigma_{2} = 2 \cdot 0,014796 - 0,015659 = 0,013933\ kN/cm^{2}\underline{\underline{= 139,33\ kN/m^{2}}}</math>
 +
<br />
 +
:<math>M_{Z} = \left( \sigma_{2} - \gamma \right) \cdot \alpha = \left( 0,015659 - 0,014796 \right) \cdot 11739,13 = 10,13\ kNcm/cm \underline{\underline{= 10,13\ kNm/m}}</math>
 +
<br />
 +
:<math>H_{Z} = \left( \sigma_{2} - \gamma \right) \cdot \frac{\delta}{\beta} = \left( 0,015659 - 0,014796 \right) \cdot \frac{701,18}{32,5} = 0,0186 kN/cm \underline{\underline{= 1,86\ kN/m}}</math>
 +
<br />
 +
Die Sohldruckresultierende liegt im Schwerpunkt des Spannungstrapezes
 +
==mb-Worksuite Vergleichsrechnung==
  
  
<br />
 
 
==Quellen==
 
==Quellen==
 
<references />
 
<references />

Version vom 29. Juni 2021, 14:26 Uhr

Folgend soll ein Berechnungsbeispiel für ein Randstreifenfundament nach dem Kanya-Verfahren[1] gezeigt werden. Anschließend wird das Ergebnis der Handrechnung mit der Ergebnisausgabe des mb-Worksuite Moduls S501.de verglichen.

Aufgabenstellung

Ein Randstreifenfundament mit den folgenden Eigenschaften soll mit dem "vereinfachten Nachweis in Regelfällen" nach DIN 1054[2] nachgewiesen werden.

Aufgabenstellung Randstreifenfundament
Formelzeichen Wert Einheit
a 40,0 cm
b 50,0 cm
c 15,0 cm
l 200 cm
EB(C20/25) 3000 kN/cm2
Es 1,15 kN/cm2
P 0,50 kN/cm
PEd 0,675 kN/cm
PFund. 0,048 kN/cm
PEd (inkl. PFund. 0,7398 kN/cm
FB 15,0 cm2
IB 281,25 cm4
E 15 cm





Handrechnung


Vorwerte


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha = 3,2 \cdot \frac{E_{B} \cdot I_{B}}{l \cdot E_{S}} = 3,2 \cdot \frac{3000,0 \cdot 281,25}{200 \cdot 1,15} = 11739,13}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta = a - \frac{d}{2} = 40,0 - \frac{15,0}{2} = 32,5}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma = \frac{P}{b} = \frac{0,7398}{50,0} = 0,014796}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta = \frac{2 \cdot \beta^{2}}{3 \cdot F_{B} \cdot E_{B} + 2,5 \cdot l \cdot E_{S}} \cdot F_{B} \cdot E_{B} = \frac{2 \cdot 32,5_{2}}{3 \cdot 15,0 \cdot 3000,0 + 2,5 \cdot 200 \cdot 1,15} \cdot 15,0 \cdot 3000,0 = 701,18}


Gesuchte Größen


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{2} = \frac{\frac{2}{3} \cdot b^{2} - c \cdot b + \delta + \alpha}{\frac{b^{2}}{6} + \delta + \alpha} \cdot \gamma = \frac{\frac{2}{3} \cdot 50,0^{2} - 15,0 \cdot 50,0 + 701,18 + 11739,13}{\frac{50,0^{2}}{6} + 701,18 + 11739,13} \cdot 0,014796 = 0,015659\ kN/cm^{2} \underline{\underline{= 156,59\ kN/m^{2}}}}



Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Z} = \left( \sigma_{2} - \gamma \right) \cdot \alpha = \left( 0,015659 - 0,014796 \right) \cdot 11739,13 = 10,13\ kNcm/cm \underline{\underline{= 10,13\ kNm/m}}}


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_{Z} = \left( \sigma_{2} - \gamma \right) \cdot \frac{\delta}{\beta} = \left( 0,015659 - 0,014796 \right) \cdot \frac{701,18}{32,5} = 0,0186 kN/cm \underline{\underline{= 1,86\ kN/m}}}


Die Sohldruckresultierende liegt im Schwerpunkt des Spannungstrapezes

mb-Worksuite Vergleichsrechnung

Quellen

  1. J. Kanya, „Berechnung ausmittig belasteter Streifenfundamente mit Zentrierung durch eine Stahlbeton-Fußbodenplatte,“ Die Bautechnik, pp. 154-159, Mai 1969
  2. DIN e.V., Hrsg., „A 6.10 Vereinfachter Nachweis in Regelfällen,“ in DIN 1054:2015-11, Baugrund-Sicherheitsnachweise im Erd und Grundbau-Ergänzende Regelungen zu DIN EN 1997-1, Berlin, Beuth Verlag, 2015, pp. 47-56



Seiteninfo
Quality-flag-orange.gif
Status: Seite fertig, ungeprüft
Modul-Version: 2020.0150