Schnittgrößenermittlung deckengleicher Unterzug (Bsp.): Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Tlange (Diskussion | Beiträge) K |
Tlange (Diskussion | Beiträge) |
||
| Zeile 42: | Zeile 42: | ||
<div style="border: 2px solid red; padding: 5px;">'''Achtung:'''<br /> | <div style="border: 2px solid red; padding: 5px;">'''Achtung:'''<br /> | ||
| − | *Das Modul berechnet die Biegeschlankheit mit | + | *Das Modul berechnet die Biegeschlankheit mit l<sub>n</sub>, was aber nicht den Vorgaben des DAfstb Heft 240 entspricht!</div><br /> |
==== [[Lasteinzugsfläche deckengleicher Unterzug|Lasteinzugsfläche]] ==== | ==== [[Lasteinzugsfläche deckengleicher Unterzug|Lasteinzugsfläche]] ==== | ||
Version vom 27. April 2015, 14:43 Uhr
Aufgabe
Ermittlung der Schnittgrößen für die Bemessung eines deckengleichen Unterzuges am Zwischenauflager anhand folgender Ausgangssituation:
Maße
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Deckendicke~h = 0,20m}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Wanddicke~t = 0,24m}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Plattenstuetzweite~l_\mathrm{P,o} = 6,00m}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Plattenstuetzweite~l_\mathrm{P,u} = 4,00m}
Baustoffe
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Beton~C25/30~(XC1)~mit~f_\mathrm{ck} =25 N/mm^2}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Betonstahl~Bst~500~S~(A)~mit~f_\mathrm{yk} =500 N/mm^2}
Einwirkungen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Eigengewicht~der~Decke~g_\mathrm{k} = 6,00kN/m^2}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Verkehrslast~der~Decke~q_\mathrm{k} = 5,00kN/m^2}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Stuetze~aus~uebernommener~Pos.~(mittig)~N_\mathrm{G} = 0,11kN}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Stuetze~aus~uebernommener~Pos.~(mittig)~N_\mathrm{Q} = 20,00kN}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Blocklast~f_\mathrm{qk} = 26,30kN/m}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Abstand~der~Blocklast~vom~linken~Auflager~a = 0,50m}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Laenge~der~Blocklast~s = 1,10m}
Sicherheitsbeiwerte
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align}\gamma_\mathrm{G} =1,35\end{align}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align}\gamma_\mathrm{Q} =1,50\end{align}}
Berechnung
Effektive Stützweite
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align}l_\mathrm{eff} = l_\mathrm{n}*1,05 = 2,00m*1,05 = \underline{2,10\,\mathrm{m}}\end{align}}
Anwendung der Theorie des deckengleichen Unterzuges möglich?
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cfrac{l}{h} = \cfrac{2,10m}{0,20m} = \underline{10,5}}
(Unterbrochene Stützung mit mäßiger Länge)
Achtung:
- Das Modul berechnet die Biegeschlankheit mit ln, was aber nicht den Vorgaben des DAfstb Heft 240 entspricht!
Lasteinzugsfläche
siehe Lasteinzugsfläche (Bsp.)
Mitwirkende Plattenbreiten (Zwischenauflager)
siehe Mitwirkende Plattenbreite deckengleicher Unterzug (Bsp.)
Flächenlasten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{Gk} = g_\mathrm{k} * b_\mathrm{E} = 6,00kN/m^2 * 1,82m = \underline{10,91kN/m}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{Qk} = q_\mathrm{k} * b_\mathrm{E} = 5,00kN/m^2 * 1,82m = \underline{9,09kN/m}}
Charakteristische Schnittgrößen
Hinweis:
- Das Modul berechnet die charakteristischen Schnittgrößen für sich und summiert sie am Ende auf. Die Bemessungsschnittgrößen werden aus den Endergebnissen mittels Kombination ermittelt.
- Einzellasten sind in der Grafik oft schlecht zu erkennen.
Ständige Lasten:
- Eigengewicht der Decke (Schneider 21. Auflager S. 4.11)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{A,k} = \cfrac{q*l}{2} = \cfrac{0,912kN/m * 2,10m}{2} = \underline{11,46kN}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{A,k} = -(1+\beta+\beta^2-1,5*\beta^3)*\cfrac{q*l}{30}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{A,k} = -(1+0,5+0,5^2-1,5*0,5^3) * \cfrac{2*6,00kN/m² * (2,10m)^2}{30} = \underline{-5,01kNm}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{F,k} = -M_\mathrm{A} + \cfrac{l}{2} * V_\mathrm{A} - \cfrac{l}{2} * \cfrac{l}{6} * q}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{F,k} = 5,01kNm + \cfrac{2,10m}{2} * 11,46kN - \cfrac{2,10m}{2} * \cfrac{2,10m}{6} * 6,00kN/m^2 = \underline{3,01 kNm}}
- Eigengewicht der Stütze (Schneider 21. Auflager S. 4.8)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{A,k} = \cfrac{F}{2} = \cfrac{0,11 kN}{2} = \underline{0,055 kN}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{A,k} = -\cfrac{F*l}{8} = -\cfrac{0,11 kN* 2,10m}{8} = \underline{-0,03kNm}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{F,k} = \cfrac{F*l}{8} = \cfrac{0,11 kN* 2,10m}{8} = \underline{0,03kNm}}
- Ständige Last der Blocklast (Schneider 21. Auflager S. 4.11)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{A,k} = [\epsilon+(\epsilon-\delta)(\delta*\epsilon-\cfrac{\gamma^2}{4})]*F}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{A,k} = [0,5+0]*34,65kN = \underline{17,33kN}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{A,k} = -[\delta*\epsilon^2+(\cfrac{1}{3}-\epsilon)*\cfrac{\gamma^2}{4}]*F*l}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{A,k} = -[0,5*0,5^2+(\cfrac{1}{3}-0,5)*\cfrac{0,524^2}{4}]*34,65kN * 2,10m = \underline{-8,26kNm}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{F,k} = M_\mathrm{A} + \cfrac{l}{2} * V_\mathrm{A} - \cfrac{s}{2} * \cfrac{s}{4} * 31,50kN/m}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{F,k} = -8,26kNm + \cfrac{2,10m}{2} * 17,44kN - \cfrac{1,10m}{2} * \cfrac{1,10m}{4} * 31,50kN/m = \underline{5,16kNm}}
- Summe der charakteristischen Schnittgrößen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{A,k} = 11,46kN + 0,055kN + 17,33kN = \underline{\underline{28,84kN}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{A,k} = -5,01kNm - 0,03kNm - 8,26kNm = \underline{\underline{-13,30kNm}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{B,k} = \underline{\underline{-13,30kNm}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{F,k} = 3,01 kNm + = 0,03kNm + 5,16kNm = \underline{\underline{8,20kNm}}}
Veränderliche Lasten:
(Werden analog zu den ständigen Lasten ermittelt)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{B,k} = \underline{\underline{-34,01kN}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{A,k} = \underline{\underline{-16,33kNm}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{B,k} = \underline{\underline{-16,33kNm}}}
Bemessungsschnittgrößen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align}E_\mathrm{d} = \gamma_\mathrm{G} * G_\mathrm{k} + \gamma_\mathrm{Q} * Q_\mathrm{k}\end{align}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{A,d} = 1,35 * 28,84kN + 1,5 * 34,01kN = \underline{\underline{89,95kN}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{B,d} = \underline{\underline{-89,95kN}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{A,d} = 1,35 * (-13,30) + 1,5 * (-16,33) = \underline{\underline{-42,45kNm}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{F,d} = 1,35 * 8,20kNm + 1,5 * 12,07kNm = \underline{\underline{29,17kNm}}}
Ausdruck in mb-AEC Baustatik
Quellen
Sonstiges
- Modul-Version: 2015.0240
- Autor: T. Lange
- Veröffentlicht am: 18.04.2015
- Status: in Bearbeitung