Mindestbewehrung deckengleicher Unterzug (Bsp.): Unterschied zwischen den Versionen

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen
K
Zeile 58: Zeile 58:
 
:::<math>\rho_\mathrm{l} = \cfrac{A_\mathrm{sl}}{b_\mathrm{w}*d} = \cfrac{3,14cm^2}{44,00cm*15,70cm} = \underline{0,00455} < 0,02</math><br /><br />
 
:::<math>\rho_\mathrm{l} = \cfrac{A_\mathrm{sl}}{b_\mathrm{w}*d} = \cfrac{3,14cm^2}{44,00cm*15,70cm} = \underline{0,00455} < 0,02</math><br /><br />
 
::<math>V_\mathrm{Rd,c} = [\cfrac{0,15}{1,5}*2,00*(100*0,00455*25n/mm^2)^{1/3}+0] * 440mm*157mm = 31061N= \underline{31,06kN}</math><br /><br />
 
::<math>V_\mathrm{Rd,c} = [\cfrac{0,15}{1,5}*2,00*(100*0,00455*25n/mm^2)^{1/3}+0] * 440mm*157mm = 31061N= \underline{31,06kN}</math><br /><br />
::<math>V_\mathrm{Rd,c} = [v_\mathrm{min}+0,12*\sigma_\mathrm{cp}] * b_\mathrm{w}*d~</math><br /><br />
+
::<math>V_\mathrm{Rd,c} \ge [v_\mathrm{min}+0,12*\sigma_\mathrm{cp}] * b_\mathrm{w}*d~</math><br /><br />
 
:::<math>v_\mathrm{min} = \cfrac{0,0525}{\gamma_\mathrm{c}}*k^{3/2} *f_\mathrm{ck}^{1/2} = \cfrac{0,0525}{1,5}*2,00^{3/2} *(25kN/cm^2)^{1/2} = \underline{0,495} < 0,02</math><br /><br />
 
:::<math>v_\mathrm{min} = \cfrac{0,0525}{\gamma_\mathrm{c}}*k^{3/2} *f_\mathrm{ck}^{1/2} = \cfrac{0,0525}{1,5}*2,00^{3/2} *(25kN/cm^2)^{1/2} = \underline{0,495} < 0,02</math><br /><br />
::<math>V_\mathrm{Rd,c} = [0,495+0] * 440mm*157mm = 34193N = \underline{34,19kN}~</math><br /><br />
+
::<math>V_\mathrm{Rd,c} \ge [0,495+0] * 440mm*157mm = 34193N = \underline{34,19kN}~</math><br /><br />
 
:<math>V_\mathrm{Ed} \le V_\mathrm{Rd,c}</math><br /><br />
 
:<math>V_\mathrm{Ed} \le V_\mathrm{Rd,c}</math><br /><br />
 
:<math>\underline{\underline{29,72kN \le 34,19kN}}</math><br /><br />
 
:<math>\underline{\underline{29,72kN \le 34,19kN}}</math><br /><br />

Version vom 23. April 2015, 13:23 Uhr

Aufgabe

Ermittlung der Mindestbewehrung eines deckengleichen Unterzuges am Zwischenauflager anhand folgender Ausgangssituation:

Baustatik-Wiki

Maße


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Wanddicke~t = 0,24m}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Lichte~Stuetzweite~l_\mathrm{n} = 2,00m}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Plattenstuetzweite~l_\mathrm{P,o} = 6,00m}

Statische Nutzhöhe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_\mathrm{o} = 15,70cm~}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_\mathrm{1,o} = 4,30cm~}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_\mathrm{u} = 16,70cm~}

Mitwirkende Plattenbreiten (Zwischenauflager)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_\mathrm{M,F} = 105,00cm~}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_\mathrm{M,S} = 52,50cm~}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_\mathrm{M,Q} = 44,00cm~}

Baustoffe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Beton~C25/30~(XC1)~mit~f_\mathrm{ck} =25 N/mm^2}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Betonstahl~Bst~500~S~(A)~mit~f_\mathrm{yk} =500 N/mm^2}

Einwirkungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{Ed} = 29,72kN~}

Sicherheitsbeiwerte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align}\gamma_\mathrm{S} =1,15\end{align}}

Berechnung

Längsbewehrung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_\mathrm{s,min} = \cfrac{M_\mathrm{cr}}{z_\mathrm{II}*f_\mathrm{yk}}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{cr} = f_\mathrm{ctm} * \cfrac{I_\mathrm{I}}{z_\mathrm{I}}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{ctm} = \underline{0,26kN/cm^2}~}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_\mathrm{I} = \cfrac{b*h^3}{12} = \cfrac{105cm*(20cm)^3}{12} = \underline{70000cm^4}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z_\mathrm{I} = \cfrac{h}{2} = \cfrac{20cm}{2} = \underline{10cm}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{cr} = 0,26kN/cm^2 * \cfrac{70000cm^4}{10cm} = \underline{1820kN}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z_\mathrm{II} = 0,9*d = 0,9*16,70cm = \underline{15,03cm}~}



Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_\mathrm{gew} = \underline{\underline{3,14cm^2}}}

Ausdruck in mb-AEC Baustatik

Baustatik-Wiki

Querkraftbewehrung

  • Rechnerisch erforderlich?

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{Ed} \le V_\mathrm{Rd,c}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{Rd,c} = [\cfrac{0,15}{\gamma_\mathrm{c}}*k*(100*\rho_\mathrm{l}*f_\mathrm{ck})^{1/3}+0,12*\sigma_\mathrm{cp}] * b_\mathrm{w}*d}

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle k=1+{\sqrt {\cfrac {200}{d}}}=1+{\sqrt {\cfrac {200}{157mm}}}={\underline {2,13}}>2,0}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = \underline{2,0}~}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho_\mathrm{l} = \cfrac{A_\mathrm{sl}}{b_\mathrm{w}*d} = \cfrac{3,14cm^2}{44,00cm*15,70cm} = \underline{0,00455} < 0,02}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{Rd,c} = [\cfrac{0,15}{1,5}*2,00*(100*0,00455*25n/mm^2)^{1/3}+0] * 440mm*157mm = 31061N= \underline{31,06kN}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{Rd,c} \ge [v_\mathrm{min}+0,12*\sigma_\mathrm{cp}] * b_\mathrm{w}*d~}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_\mathrm{min} = \cfrac{0,0525}{\gamma_\mathrm{c}}*k^{3/2} *f_\mathrm{ck}^{1/2} = \cfrac{0,0525}{1,5}*2,00^{3/2} *(25kN/cm^2)^{1/2} = \underline{0,495} < 0,02}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{Rd,c} \ge [0,495+0] * 440mm*157mm = 34193N = \underline{34,19kN}~}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V_\mathrm{Ed} \le V_\mathrm{Rd,c}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{\underline{29,72kN \le 34,19kN}}}

  • Mindestquerkraftbewehrung ist nicht erforderlich!

Ausdruck in mb-AEC Baustatik

Baustatik-Wiki

Quellen


Sonstiges

  • Modul-Version: 2015.0240
  • Autor: T. Lange
  • Veröffentlicht am: 22.04.2015
  • Status: in Bearbeitung