Auflagerelastizitäten (Bsp.)
Beispiel 1 Federsteifigkeit
Aufgabe
Im folgenden Beispiel wird ein Stahlbetonbalken auf einen Stahlträger (HEA 300) gelagert. Zur Bestimmung der Auflagerelastizität wird die Federsteifigkeit des Trägers ermittelt:
Vorgabewerte
Die folgenden benutzten Größen sind:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_\mathrm{y}~....~\mathrm{Flaechentraegheitsmoment}~~~~~~~~\left([I_\mathrm{y}]=\mathrm{m}^{4}\right) }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E~....~\mathrm{Elastizitaetsmodul}~~~~~~~~\left([E]=\mathrm{N}\mathrm{m}^{-2}\right)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l~....~\mathrm{Laenge}~~~~~~~~\left([l]=\mathrm{m}\right)}
Aus Nachlagewerk entnommene Werte seien:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_\mathrm{y}=18260\,\mathrm{cm}^{4}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E=210000\,\mathrm{N}\mathrm{mm}^{-2}}
mit der Vorgabe einer selbst definierten Länge:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l=5{,}00\,\mathrm{m}}
Berechnung
Durchbiegung unter einer Einzellast in Feldmitte
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w=\cfrac{F\cdot l^{3}}{48\cdot E\cdot I_\mathrm{y}}}
Federsteifigkeit
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle k(l)={\cfrac {F}{w}}={\cfrac {{\cancel {F}}\cdot 48\cdot E\cdot I_{\mathrm {y} }}{{\cancel {F}}\cdot l^{3}}}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k(l)=\cfrac{48\cdot 210000\,\mathrm{N}\mathrm{mm}^{-2}\cdot 18260\,\mathrm{cm}^{4}} {\left(5{,}00\,\mathrm{m}\right)^{3}} =\cfrac{48\cdot 210000\cdot 18260} {5{,}00^{3}}~\cdot ~ \cfrac{\mathrm{N}\mathrm{mm}^{-2}\cdot\mathrm{cm}^{4}} {\mathrm{m}^{3}} =Zahlenwert \cdot \cfrac{10^{-6}\,\mathrm{N}\mathrm{m}^{-2}\cdot 10^{-8}\,\mathrm{m}^{4}} {\mathrm{m}^{3}} =...=\underline{\underline{147249\,\mathrm{kN}\mathrm{m}^{-1}}} }
Quellen
Sonstiges
- Modul-Version: 2014.011
- Autor: R. Wengatz
- Veröffentlicht am: 24.02.2015
- Status: in Bearbeitung