Stahlbetonstütze - Verfahren mit Nennsteifigkeit (Bsp.)
Diese Seite ist noch in Bearbeitung.
Aufgabenstellung
Platzhalter für Aufgabe
Handrechnung
Schnittgrößen nach Theorie I. Ordnung
Knicklänge
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta = 1,0} für das gegebene statische System (Pendelstütze)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_0 = \beta \cdot l_{col} = 1,0 \cdot 6,00 m = 6,00 m}
Schlankheit und Überprüfung der Notwendigkeit des Nachweises nach Theorie II. Ordnung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda = \frac{l_0}{\sqrt{\frac{I}{A}}} = \frac{600 cm}{35 cm / \sqrt{12}}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_{Ed} = \frac{N_{Ed}}{b \cdot h \cdot f_{cd}} = \frac{- 2.812,5 kN}{35 cm \cdot 35 cm \cdot 1,42 kN/cm^2} = - 1,62 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\lambda}_{crit} = \frac{16}{\sqrt{|v_{Ed}}} = \frac{16}{\sqrt{- 1,62}} = 12,57 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\lambda}_{vorh} > max(25; \frac{16}{\sqrt{|v_{Ed}}}) }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 59,38 > 25 }
Es ist ein Nachweis nach Theorie II. Ordnung nötig.
Nennsteifigkeit
E-Moduln
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_{cd} = \frac{E_{cm}}{{\gamma}_{CE}} = \frac{31.000 N/mm^2}{1,5} = 20.667 N/mm^2 = 2.066,7 kN/cm^2 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_s = 200.000 N/mm^2 }
==== Flächenträgheitsmoment des Betons
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_c = \frac{b \cdot h^3}{} }