Druckglieder - Bemessung

Aus Baustatik-Wiki
Version vom 27. Oktober 2019, 19:25 Uhr von LDöring (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen


Klassifizierung

Druckglieder sind stabförmige Bauteile mit überwiegend längskraftbeanspruchtem Querschnitt.

Symmetrisch bewehrte Bauteile durch einachsige Biegung und Längskraft beansprucht

Für die Bemessung von Druckgliedern werden bevorzugt Interaktionsdiagramme als Bemessungshilfsmittel herangezogen. Diese Interaktionsdiagramme gelten für symmetrisch bewehrte Querschnitte unter Biegung und Längskraft, wobei die Bewehrung aus der Beziehung zwischen Moment und Normalkraft ermittelt wird. Druckglieder werden bei meist wechselseitig wirkenden Momenten üblicherweise symmetrisch bewehrt. Das Interaktionsdiagramm beruht auf den Identitätsbeziehungen: die einwirkenden Schnittgrößen entsprechen den Widerständen. Beim überdrückten Querschnitt (nur Druckspannungen und eine außerhalb des Querschnitts liegende Dehnungs-Nulllinie) eines horizontal gelagerten Balkens ergäbe dies

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma H=0:{{N}_{Ed}}=-\left| {{F}_{cd}} \right|-\left| {{F}_{s1d}} \right|-\left| {{F}_{s2d}} \right|}

(der einwirkenden Normalkraft wirkt die Betondruckkraft und die Stahldruckkraft der beiden Bewehrungslagen oben und unten entgegen)

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma M=0:{{M}_{Ed}}=\left| {{F}_{cd}} \right|\cdot \frac{h}{2-a}-\left| {{F}_{s1d}} \right|\cdot \frac{h}{2-{{d}_{1}}}+\left| {{F}_{s2d}} \right|\cdot \frac{h}{2-{{d}_{2}}}}

(dem einwirkenden Moment wirken die Betondruckkraft und die Stahlkräfte jeweils multipliziert mit ihren Hebelarmen entgegen).

Baustatik-Wiki

Mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{F}_{cd}}={{\alpha }_{v}}\cdot h\cdot b\cdot {{f}_{cd}}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\alpha }_{v}}=1-\frac{16}{189}\cdot (\left| {{\varepsilon }_{c2}} \right|-2){}^\text{2}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{F}_{s1d}}={{A}_{s1}}\cdot \left| {{\sigma }_{s1d}} \right|}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{F}_{s2d}}={{A}_{s2}}\cdot \left| {{\sigma }_{s2d}} \right|}

ergibt sich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{N}_{Ed}}=-{{\alpha }_{v}}\cdot h\cdot b\cdot {{f}_{cd}}-{{A}_{s1}}\cdot \left| {{\sigma }_{s1d}} \right|-{{A}_{s2\cdot }}\left| {{\sigma }_{s2d}} \right|}


Bezogen auf die Betonfestigkeit und die Abmessungen erhält man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\nu }_{Ed}}=-{{\alpha }_{v}}-{{\rho }_{1\cdot }}\cdot \frac{\left| {{\sigma }_{s1d}} \right|}{{{f}_{cd}}}-{{\rho }_{2}}\cdot \frac{\left| {{\sigma }_{s2d}} \right|}{{{f}_{cd}}}}


mit der bezogenen Normalkraft

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\nu }_{Ed}}=\frac{{{N}_{Ed}}}{b\cdot h\cdot {{f}_{cd}}}}

und den Längsbewehrungsgraden

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\rho }_{i}}=\frac{{{A}_{si}}}{b\cdot h}}


Der mechanische Bewehrungsgrad als Verhältnis von der Bewehrung aufnehmbaren Normalkraft zu der von dem Beton aufnehmbaren Normalkraft beschreibt sich zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\omega }_{i}}={{\rho }_{i}}\cdot \frac{{{f}_{yd}}}{{{f}_{cd}}}}

Eingesetzt in die Gleichung für die bezogene Normalkraft ergibt sich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\nu }_{Ed}}=-{{\alpha }_{v}}-{{\omega }_{1\cdot }}\cdot \frac{\left| {{\sigma }_{s1d}} \right|}{{{f}_{yd}}}-{{\omega }_{2}}\cdot \frac{\left| {{\sigma }_{s2d}} \right|}{{{f}_{yd}}}}

So gilt außerdem mit dem auf Abmessung und Betonfestigkeit bezogenen Moment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\mu }_{Ed}}=\frac{{{M}_{Ed}}}{b\cdot {{h}^{2}}\cdot {{f}_{cd}}}} und der Gleichung oben aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma M=0}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\mu }_{Ed}}={{\alpha }_{v}}\cdot \left( \frac{1}{2}-{{k}_{a}} \right)-{{\omega }_{1}}\cdot \frac{\left| {{\sigma }_{s1d}} \right|}{{{f}_{yd}}}\cdot \left( \frac{1}{2}-\frac{{{d}_{1}}}{h} \right)+\omega 2\cdot \frac{\left| {{\sigma }_{s2d}} \right|}{{{f}_{yd}}}\cdot \left( \frac{1}{2}-\frac{{{d}_{2}}}{h} \right)}

mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{k}_{a}}=\frac{6}{7}\cdot \frac{441-64\cdot {{\left( \left| {{\varepsilon }_{c2}} \right|-2 \right)}^{2}}}{756-64\cdot \left( \left| {{\varepsilon }_{c2}} \right|-2 \right)}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\varepsilon }_{c2}}~} - der Betonstauchung am oberen Bauteilrand.


Vereinfachend sind für die Bemessung mit dem Interaktionsdiagramm die Eingangsgrößen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\mu }_{Ed}}~} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\nu }_{Ed}}~} notwendig. Außerdem gilt es, die richtige Tafel in Abhängigkeit von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{{{d}_{i}}}{h}} zu wählen oder gegebenenfalls zu interpolieren. Der damit ermittelte mechanische Bewehrungsgrad ist gleichmäßig auf die Bewehrungslagen zu verteilen.
Es ist darauf zu achten, dass die Normalkraft situationsabhängig sowohl günstig als auch ungünstig einwirken kann. Die zugehörigen Bemessungskombinationen sind demnach beide zu verwenden, um für beide Fälle die Bewehrungsmenge zu ermitteln und dann selbstverständlich die größere anzuordnen.
Bei gedrungenen Stützen besteht bei mittiger Druckbelastung keine Knickgefahr und es genügt ein vereinfachter Nachweis ohne Berücksichtigung der Einwirkungen nach Theorie II. Ordnung.
Die Bemessung schlanker Stützen erfordert eine weiterführende Betrachtung in Hinblick auf den Schnittgrößenzuwachs.
Mittig gedrückte Stützen ohne Momentenbeanspruchung sind stets mit einer Mindestausmitte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{e}_{0}}=\max \{h/30;20mm\}~} anzusetzen. Demnach ist von einer Momentenbeanspruchung auszugehen. Bei schlanken Stützen, die ohnehin nach Theorie II. Ordnung zu bemessen sind, gilt diese Bestimmung nicht.


Unbewehrte Druckglieder

Als unbewehrt gelten Stützen, wenn sie einen Bewehrungsgrad kleiner der Mindestbewehrung aufweisen. Es gilt eine maximal zulässige Betongüte von C35/45.
Ab einer Schlankheit von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda \ge 8,5} sind unbewehrte Druckbauteile stets als schlank anzusehen (bei zweiseitig gehaltenen Druckglieder auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{l}_{col}}/h<2,5} ), eine Bemessung nach Theorie II. Ordnung ist also üblicherweise erforderlich. Es gelten folgende Bedingungen für die Ausführung unbewehrter Stützen oder Wände:

- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda \le 85}

und

- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{l}_{w}}/{{h}_{w}}\le 25} für Pendelstützen und zweiseitig gehaltene Wände.

Die Knicklänge des Druckglieds berechnet sich wie gehabt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{l}_{0}}=\beta \cdot {{l}_{w}}}

mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{l}_{w}}} - der Länge des Druckglieds
β – dem Knickbeiwert.


Als Duktilitätskriterium gilt eine Höchstausmitte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{e}_{d}}<0,4h} , ermittelt aus der maßgebenden Einwirkungskombination und den berücksichtigten Zusatzausmitten der Imperfektion und der Theorie II. Ordnung. Dadurch wird nie ein Versagen ohne Vorankündigen eintreten.

Der Nachweis wird geführt mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{N}_{Rd,\lambda }}=b\cdot h\cdot {{f}_{cd,pl}}\cdot \Phi }

mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1,14\cdot (1-\frac{2{{e}_{tot}}}{h})-0,02\cdot \frac{{{l}_{0}}}{h}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\le \Phi \le 1-\frac{2{{e}_{tot}}}{h}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{e}_{tot}}} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{e}_{0}}+{{e}_{i}}~}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{f}_{cd,pl}}} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\alpha }_{cc,pl}}\cdot {{f}_{ck}}/{{\gamma }_{c}}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\alpha }_{cc,pl}}} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0,7~}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\gamma }_{c}}} = Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1,5~}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{e}_{0}}} - der Ausmitte nach Theorie I. Ordnung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{e}_{i}}} - der ungewollten Ausmitte, es darf angenommen werden: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{e}_{i}}=\frac{{{l}_{0}}}{400}}

Der Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi } berücksichtigt hierbei auf vereinfachende Art und Weise die Auswirkungen nach Theorie II. Ordnung.


Symmetrisch bewehrte Bauteile durch zweiachsige Biegung und Längskraft beansprucht

Die Bemessung erfolgt bei zu vernachlässigender Einwirkung nach Theorie II. Ordnung mit einem ähnlichen Interaktionsdiagramm wie für einachsige Biegung. Die bezogenen Schnittgrößen sind wie bekannt


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{l}{{\nu }_{Ed}}=\frac{{{N}_{Ed}}}{b\cdot h\cdot {{f}_{cd}}}\\{{\mu }_{1}}=\max \{{{\mu }_{Ed,y}};{{\mu }_{Ed,z}}\}\\{{\mu }_{2}}=\min \{{{\mu }_{Ed,y}};{{\mu }_{Ed,z}}\}\\{{\mu }_{Ed,y}}=\frac{\left| {{M}_{Ed,y}} \right|}{b\cdot {{h}^{2}}\cdot {{f}_{cd}}}\\{{\mu }_{Ed,z}}=\frac{\left| {{M}_{Ed,z}} \right|}{b{}^\text{2}\cdot h\cdot {{f}_{cd}}}\end{array}}

Weitere Eingangsgrößen sind das Verhältnis von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{{{d}_{1}}}{h}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{{{b}_{1}}}{b}} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{b}_{1}}~} das Pendant zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{h}_{1}}~} in die andere Querschnittsrichtung darstellt. Nach Ermittlung des mechanischen Bewehrungsgrades gilt es diesen gleichmäßig auf die für das Interaktionsdiagramm erstellte Bewehrungsanordnung zu verteilen.


Quellen


Seiteninfo
Quality-flag-white.gif
Status: Seite in Bearbeitung, es gibt Hinweise zur Verbesserung