Stahlbetonstütze - Verfahren mit Nennsteifigkeit

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen

Allgemeines

Das Verfahren mit Nennsteifigkeit beschreibt die näherungsweise Bestimmung der Schnittgrößen einer Stahlbetonstütze nach Theorie II. Ordnung. Die Grundidee ist hierbei, das Moment nach Theorie I. Ordnung um einen Faktor zu vergrößern, der von der Steifigkeit des betrachteten Bauteils abhängt. Das Verfahren lässt sich prinzipiell auf beliebige Querschnitte anwenden. In Deutschland ist das Verfahren nicht üblich und wird im Allgemeinen zugunsten des Verfahrens mit Nennkrümmung ignoriert. Dies liegt unter anderem daran, dass das Verfahren mit Nennsteifigkeit häufig mehr Bewehrung erfordert oder kein Ergebnis liefert. Die hier aufgeführten Formeln basieren auf dem EC 2.[1]

Erfordernis

Nach Eurocode 2 sind Auswirkungen nach Theorie II. Ordnung zu berücksichtigen, wenn sie gegenüber denen der Theorie I. Ordnung 10% größer sind. Für Einzeldruckglieder ist diese Bedingung für eine leichtere Handhabung in Form eines Grenzwertes der Schlankheit beschrieben. Hierbei gilt unter Berücksichtigung des nationalen Anhangs eine Grenzschlankheit von


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\lambda }_{\lim }}=25~} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left| n \right|\ge 0,41}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\lambda }_{\lim }}=\frac{16}{\sqrt{n}}} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left| n \right|<0,41}

mit
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=\frac{{{N}_{Ed}}}{{{A}_{c}}\cdot {{f}_{cd}}}} (Druckkraft positiv)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{N}_{Ed}}} - dem Bemessungswert der Normalkraft
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{A}_{c}}} - der Betonquerschnittsfläche
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{f}_{cd}}} - dem Bemessungswert der Betondruckkraft.

Der zweite Grenzwert erlaubt eine höhere Schlankheit als 25. Dabei wird berücksichtigt, dass bei geringerer Normalkraftbeanspruchung die Momente nach Theorie II. Ordnung entsprechend kleiner werden und demnach vernachlässigbar sind.

Schnittgrößenermittlung

Das Moment nach Theorie II. Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{M}_{Ed}}} wird ermittelt durch eine Vergrößerung des Moments nach Theorie I. Ordnung (einschließlich Imperfektionen) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{M}_{0Ed}}} nach der Formel:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{M}_{Ed}} ={{M}_{0Ed}} \cdot ( 1 + \cfrac{\beta}{( {{N}_{B}}/{{N}_{Ed}}) -1} )}

Moment nach Theorie I. Ordnung

Das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{M}_{0Ed}}} setzt sich zusammen aus dem nach üblichen Regeln ermittelten Moment nach Theorie I. Ordnung und dem durch Imperfektionen entstehenden Moment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{M}_{i}}} . Siehe hierzu auch die Hinweise zum Verfahren mit Nennkrümmung. Allgemein wird der Einfluss von Imperfektionen mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{M}_{i}} = |{{N}_{i}}| \cdot {{e}_{i}}}

beachtet. Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{e}_{i}}} die Exzentrizität in Folge von Imperfektionen und wird berechnet als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{e}_{i}} ={{\Theta}_{i}} \cdot \cfrac{{l}_{0}}{2}} .

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_0} - ist die Knicklänge wie oben.

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\Theta }_{i}} - ist die Schiefstellung und definiert als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\Theta}_{i}} = \cfrac{1}{200} \cdot {{\alpha}_{h}}} mit der Bedingung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \leq {{\alpha}_{h}} = \cfrac{2}{\sqrt{l}} \leq 1} .

Beiwert zur Berücksichtigung des Momentenverlaufs

Der Beiwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} berechnet sich als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta = \cfrac{\pi^2}{c_0}} .

Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_0} gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_0 = 8} für einen konstanten Momentenverlauf,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_0 = 9,6} für einen parabelförmigen Momentenverlauf,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_0 = 12} für einen dreieckigen Momentenverlauf.

Knicklast

Die Knicklast Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_B} berechnet sich als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_B = \cfrac{EI \cdot \pi^2}{l_0^2}} .

Nennsteifigkeit

Die Nennsteifigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle EI} setzt sich zusammen aus Anteilen für den Beton und den Bewehrungsstahl:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle EI = K_c \cdot E_{cd} \cdot I_c + K_s \cdot E_s \cdot I_s} .

Dabei sind:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c} Beiwert für Betonanteil der Nennsteifigkeit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_{cd}} - E-Modul des Betons

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_c} - Flächenträgheitsmoment des Betonquerschnitts

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_s} - Beiwert für Bewehrungsanteil der Nennsteifigkeit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E_{s}} - E-Modul des Bewehrungsstahls

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_s} - Flächenträgheitsmoment der Bewehrung bezogen auf den Schwerpunkt des Betonquerschnitts


Bei der Ermittlung der Nennsteifigkeit werden zwei Situationen in Abhängigkeit vom geometrischen Bewehrungsgrad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\rho}_L} unterschieden, wobei die erste Situation als eine Art Vorbemessung gewertet werden kann und die zweite als darauf folgende, genauere Bemessung.

Vorbemessung

Bedingung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\rho}_L = \cfrac{A_s}{A_c} \geq 0,01}

Unter der obigen Bedingung gelten

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c = \cfrac{0,3}{1 + 0,5 \cdot {\phi}_{ef}}} und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_s = 0} mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\phi}_{ef}} - Endkriechzahl

Damit ist im Zuge der Vorbemessung der Einfluss des Bewehrungsstahls aus der Bestimmungsformel gestrichen. Dies soll im Sinne einer Vorbemessung die Auswahl von Bewehrung für die Stütze ermöglichen, um dann im nächsten Schritt zu überprüfen, ob die gewählte Bewehrung hinreichend ist.

Genauere Bemessung

Bedingung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\rho}_L = \cfrac{A_s}{A_c} \geq 0,002}

Unter der obigen Bedingung gelten

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_c = \cfrac{k_1 \cdot k_2}{1 + {\phi}_{ef}}} und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_s = 1} mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_1 = \sqrt{f_{ck}/20}} und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_2 = n_{Ed} \cdot \cfrac{\lambda}{170} \leq 0,20}

Bemessung

Nach der nach obigem Schema erfolgten Ermittlung der Schnittgrößen kann das Interaktionsdiagramm für symmetrisch bewehrte Querschnitte unter Normalkraft und Moment mit den Größen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_{Ed}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\mu}_{Ed}} genutzt werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_{Ed} = \cfrac{N_{Ed}}{b \cdot h \cdot f_{cd}}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\mu}_{Ed} = \cfrac{M_{Ed}}{b \cdot h^2 \cdot f_{cd}}}

Das Ergebnis des Interaktionsdiagramms ist der mechanische Bewehrungsgrad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\omega}_{tot}} , aus dem die benötigte Bewehrungsmenge berechnet wird:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,tot} = {\omega}_{tot} \cdot b \cdot h \cdot \cfrac{f_{cd}}{f_{yd}}}

Der Vergleich zwischen benötigter und gewählter Bewehrungsmenge zeigt schließlich, ob die gewählte Bewehrung hinreichend war oder ob in einem weiteren Iterationsschritt nachgebessert werden muss. Hierbei ist zu beachten, dass eine stärkere, gewählte Bewehrung die Nennsteifigkeit erhöht und damit auch die benötigte Bewehrungsmenge senkt.


Quellen

  1. Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken. Teil 1-1- Allgemeine Bemessungsregeln und Regeln für den Hochbau. Deutsche Fassung EN 1992-1-1:2004+AC:2010, Berlin 2011.