Mindestbewehrung zur Sicherstellung der Duktilität (Bsp.)

Aus Baustatik-Wiki
Version vom 14. August 2024, 22:21 Uhr von EWill (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „Auf dieser Seite wird die Ermittlung der Mindestbewehrung zur Sicherstellung der Duktilität an einem ausgewählten Beispielen dargestellt. Die theoretischen G…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Auf dieser Seite wird die Ermittlung der Mindestbewehrung zur Sicherstellung der Duktilität an einem ausgewählten Beispielen dargestellt. Die theoretischen Grundlagen der Mindestbewehrung zur Sicherstellung der Duktilität werden auf einer gesonderten Seite dargestellt.

Rechteckquerschnitte ohne Druckbewehrung

Aufgabenstellung

Biegebemessung mit dem omega Verfahren1.png

Die Mindestbewehrung zur Sicherstellung der Duktilität soll für einen Balken mit Rechteckquerschnitt (b=35cm; h=75cm; Avorh=15,71cm²) werden. Sie soll ohne Normalkraft, mit angreifender Drucknormalkraft (NEd=-115,5kN) und mit angreifender Zugnormalkraft (NEd=115,5kN) ermittelt werden. Der Beton hat eine Festigkeitsklasse C20/25. Bei dem Stahl handelt es sich um einen B500A. Auf die Vorbemessung wird im Rahmen dieses Beispiels verzichtet, die statische Nutzhöhe beträgt 71cm.

Festigkeiten

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{ctm}=2,2\frac{N}{mm^2}=0,22\frac{kN}{cm^2}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{yk}=500\frac{N}{mm^2}=50\frac{kN}{cm^2}}

Querschnittswerte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_I=\frac{b\cdot h^3}{12}={35\cdot75^3}{12}=1230469cm^4}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z_{I,c1}=\frac{h}{2}=\frac{75}{2}=37,5cm}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z_{II}=0,9\cdot d=0,9\cdot71=63,9cm}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z_s=d-\frac{h}{2}=71-\frac{75}{2}=33,5cm}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_c=h\cdot h=35\cdot75=2625cm^2}

Mindestbewehrung ohne Normalkraft

Ermittlung des Rissmoments

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr}=\frac{f_{ctm}\cdot I_I}{z_{I,c1}}==\frac{0,22\cdot 1230469}{37,5}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr}=7219kNcm}

Ermittlung der Mindestbewehrung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,min}=\frac{M_{cr}}{z_{II}\cdot f_{yk}}=\frac{7219}{63,9\cdot50}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,min}=2,25cm^2}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{{A_{s,min}=2,25cm^2<15,71cm^2=A_{s,vorh}}}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow} Die Mindestbewehrung ist nicht maßgebend.

Mindestbewehrung mit Drucknormalkraft

Ermittlung der Mindestbewehrung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr}=\left(f_{ctm}-\frac{N}{A_c}\right)\cdot\frac{I_I}{z_{I,c1}}=\left(0,22-\frac{-115,5}{2625}\right)\cdot\frac{1230469}{37,5}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr}=8663kNcm}

Ermittlung der Mindestbewehrung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr,s}=M_{cr}-N\cdot z_s=8663-(-115,5)\cdot 33,5}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr,s}=12532kNcm}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,min}=\left(\frac{M_{cr,s}}{z_{II}}+N\right)\cdot\frac{1}{f_{yk}}=\left(\frac{12532}{63,9}-115,5\right)\cdot\frac{1}{50}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,min}=1,61cm^2}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{{A_{s,min}=1,61cm^2<15,71cm^2=A_{s,vorh}}}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow} Die Mindestbewehrung ist nicht maßgebend.

Mindestbewehrung mit Zugnormalkraft

Ermittlung der Mindestbewehrung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr}=\left(f_{ctm}-\frac{N}{A_c}\right)\cdot\frac{I_I}{z_{I,c1}}=\left(0,22-\frac{115,5}{2625}\right)\cdot\frac{1230469}{37,5}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr}=5775kNcm}

Ermittlung der Mindestbewehrung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr,s}=M_{cr}-N\cdot z_s=5775-115,5\cdot 33,5}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{cr,s}=1906kNcm}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,min}=\left(\frac{M_{cr,s}}{z_{II}}+N\right)\cdot\frac{1}{f_{yk}}=\left(\frac{1906}{63,9}+115,5\right)\cdot\frac{1}{50}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,min}=2,91cm^2}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{{A_{s,min}=2,91cm^2<15,71cm^2=A_{s,vorh}}}}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow} Die Mindestbewehrung ist nicht maßgebend.

Seiteninfo
Quality-flag-white.gif
Status: in Bearbeitung