Durchstanzen - Korrekturfaktor β

Aus Baustatik-Wiki
Version vom 9. Dezember 2015, 21:13 Uhr von Mwulf (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „==Korrekturfaktor β == - nach EC 2-1-1, 6.4.3.(6) <br /> Infolge von Biegung ist die aufgebrachte Querkraft nicht mehr gleichmäßig über den Umfang verteilt…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Korrekturfaktor β

- nach EC 2-1-1, 6.4.3.(6)
Infolge von Biegung ist die aufgebrachte Querkraft nicht mehr gleichmäßig über den Umfang verteilt, die Belastung einer Seite ist folglich erhöht. Der Lasterhöhungsfaktor β berücksichtigt diesen Umstand[1].
Zur Ermittlung des Faktors β stehen drei Verfahren zur Verfügung.
Diese werden folgend erläutert:

Konstanter Faktor für ausgesteifte Systeme mit nahezu gleichen Stützweiten


Es werden horizontal unverschiebliche, ausgesteifte Systeme mit Stützweitenunterschieden von maximal 25 % und eine Belastung durch Gleichlast angenommen [2]. Die Stützweitenverhältnisse betragen somit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0,8\leq l_1/l_2\leq 1,25} [3].

Bild 10: Korrekturfaktor Beta



Für diesen Fall können somit folgende konstante Näherungswerte angenommen werden(siehe Bild 10):

  • 1,10 Innenstützen
  • 1,40 Randstützen
  • 1,35 Wandenden (NA)
  • 1,50 Eckstützen
  • 1,20 Wandecken (NA)
  • Bei Fundamenten wird ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta \leq 1,10} angenommen.



Ermittlung über Sektormodell


Im ersten Schritt sind die Querkraftnulllinien anzusätzen. Diese werden abgeschätzt oder errechnet (linear-elastisch). Anschließend findet eine Unterteilung der Lasteinzugsfläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{LE}} in i-Lasteinleitungssektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_i} (siehe Bild 11) statt.

Bild 11: Sektormodell

Hierbei sollten mindestens 3-4 Sektoren pro Quadrant betrachtet werden [4].
Der Lasterhöhungsfaktor ergibt sich somit wie folgt [5]:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_{Ed}=e_d \cdot A_{LE}}


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_{Ed,m}=\nu_Ed \cdot u_{crit}}


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_{Ed,i}=e_d \cdot \frac{A_i}{u_i}}


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta=max\{ \nu_{Ed,i}/\nu_{Ed,m}\}}



Genaueres Verfahren

nach EC 2-1-1, 6.4.3 (1;2)
Sind die oben genannten Voraussetzungen nicht erfüllt oder ist die bezogene Ausmitte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e/c} bei Randstützen größer als 1,2 (wobei c die Stützenabmessung in Richtung der Ausmitte darstellt), ist der Lasterhöhungsfaktor mit genaueren Verfahren

Bild 12: Querkraftverteilung infolge eines Kopfmomentes einer Stütze

zu ermitteln. Hierbei wird die Annahme einer vollplastischen Schubspannungsverteilung am kritischen Rundschnitt getroffen [6].

Die Gleichung lautet somit wie folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta=1+k\cdot\frac{M_{Ed}}{V_{Ed}}\cdot\frac{u_1}{W_1}\le 1,10}

mit

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_1=\int_0^{u_i} |e| dl}


und somit bei einer geschlossenen Rechteckstütze mit c1 parallel und c2 senkrecht zur Lastausmitte:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_1=\frac{c_1^2}{2}+c_1c_2+4c_2d+16d^2+2\pi dc_1}



und dem Beiwert k

Tabelle Beiwert k







Bei Decken-Stützenknoten mit zweiachsiger Ausmitte gilt (NA) [2]:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_1=1+\sqrt{(k_y\cdot\frac{M_{Ed,y}}{V_{Ed}}\cdot\frac{u_1}{W_{1,y}})^2+(k_z\cdot\frac{M_{Ed,z}}{V_{Ed}}\cdot\frac{u_1}{W_{1,z}})^2}\ge 1,10}



  1. Referenzfehler: Es ist ein ungültiger <ref>-Tag vorhanden: Für die Referenz namens Q5 wurde kein Text angegeben.
  2. Referenzfehler: Es ist ein ungültiger <ref>-Tag vorhanden: Für die Referenz namens Q7 wurde kein Text angegeben.
  3. Referenzfehler: Es ist ein ungültiger <ref>-Tag vorhanden: Für die Referenz namens Q8 wurde kein Text angegeben.
  4. Referenzfehler: Es ist ein ungültiger <ref>-Tag vorhanden: Für die Referenz namens Q1 wurde kein Text angegeben.
  5. Referenzfehler: Es ist ein ungültiger <ref>-Tag vorhanden: Für die Referenz namens Q2 wurde kein Text angegeben.
  6. Referenzfehler: Es ist ein ungültiger <ref>-Tag vorhanden: Für die Referenz namens Q4 wurde kein Text angegeben.