Momentenausrundung (Bsp.)
Beispiel 1 Momentenausrundung über Mauerwerk
Das folgende Beispiel zeigt eine Berechnung der Momentenausrundung, wie Sie mit dem Modul S340.de geführt wird.
Aufgabe
Ermittlung des Bemessungsmoment über einer frei drehbaren Lagerung, für einen Stahlbetonträger mit folgendem System:
Vorgabewerte
Schnittgrößen wurden aus einer Rechnung von dem Modul S340.de übernommen:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_\mathrm{Ed}=-60{,}67\,\mathrm{kNm}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_\mathrm{Ed,sup}=143{,}1\,\mathrm{kN}}
Auflagerbreite:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=0{,}24\,\mathrm{cm}}
Berechnung
Durchbiegung unter einer Einzellast in Feldmitte
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w=\cfrac{F\cdot l^{3}}{48\cdot E\cdot I_\mathrm{y}}}
Federsteifigkeit
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=\cfrac{48\cdot 210000\,\mathrm{N}\mathrm{mm}^{-2}\cdot 18260\,\mathrm{cm}^{4}} {\left(5{,}00\,\mathrm{m}\right)^{3}} =\cfrac{48\cdot 210000\cdot 18260} {5{,}00^{3}}~\cdot ~ \cfrac{\mathrm{N}\mathrm{mm}^{-2}\cdot\mathrm{cm}^{4}} {\mathrm{m}^{3}} =Zahlenwert \cdot \cfrac{10^{-6}\,\mathrm{N}\mathrm{m}^{-2}\cdot 10^{-8}\,\mathrm{m}^{4}} {\mathrm{m}^{3}} =...=\underline{\underline{147249\,\mathrm{kN}\mathrm{m}^{-1}}} }
Quellen
Sonstiges
- Modul-Version: 2014.011
- Autor: R. Wengatz
- Veröffentlicht am: 24.02.2015
- Status: in Bearbeitung