Benutzer:Sneumann

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen

Berechnung und Bemessung des Zwischenpodest

Für Die Berechnung der Treppenpodeste wurden im Betonkalender 1980 im Abschnitt Treppen von Köseoglu, S. Zwei Tabellen erstellt mit denen sich Podestplatten mit gegenüberliegenden frei drehbar gelagerten Rändern und Podestplatten mit dreiseitig frei drehbar gelagerten Rändern. berechnen lassen Für die Belastungen wird unterschieden in Gleichflächenlast Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_{d}} , Streckenlast am Rand aus der Auflagerkraft des Treppenlaufs und Streckenmoment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{0}} aus der elastischen Einspannung des Treppenlaufs. Nach dem errechnen der einzelnen Momente resultierend aus der jeweiligen belastung wird über das Su­per­po­si­ti­ons­prin­zip die wirkende Schnittkraft ermittelt


Tafel zur Schnittgrößen Ermittlung von Podestplatten mit gegenüberliegenden frei drehbar gelagerten Rändern [F 1] [F 2]
1 2 3 4 5 6 7 8 9 10
Belastungsvariante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {t_{P}}{b_{P} } } 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
1 I Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,m} = \frac{F_{d} \cdot b_{P}^{2}}{8} }
2 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{y,m} = 0,2 \cdot m_{x,m} }
3 II Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,m} = \frac{F_{0} \cdot b_{P}}{\chi} } 2,39 3,23 4,05 4,88 5,81 6,81 7,41 9,00
4 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{y,m} = - \frac{F_{0} \cdot b_{P}}{\chi} } 38,5 31,3 27,8 26,4 25,7 26,4 27,1 29,8
5 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,r1} = \frac{F_{0} \cdot b_{P}}{\chi} } 2,19 2,75 3,17 3,45 3,65 3,81 3,88 3,96
6 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,r2} = \frac{F_{0} \cdot b_{P}}{\chi} } 2,63 3,79 5,18 6,85 9,00 12,1 15,6 20,9
7 III Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,m} = - \frac{m_{0}}{\chi} } 200 66,7 38,5 26,4 21,3 18,6 16,9 16,1
8 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{y,m} = - \frac{m_{0}}{\chi} } 2,08 2,29 2,58 3,00 3,57 4,37 5,35 6,61
9 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,r1} = \frac{m_{0}}{\chi} } 3,85 3,65 3,49 3,34 3,24 3,16 3,10 3,07
10 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,r2} = - \frac{m_{0}}{\chi} } 4,18 4,55 5,08 5,96 7,15 8,55 10,4 13,2
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi} = Wert in der Tabelle
  • in Belastungsvariante I wird eine Podestplatte betrachtet die ausschließlich durch eine Gleichflächenlast Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_{d}} belastet ist
  • in Belastungsvariante II wird eine Podestplatte betrachtet die ausschließlich Streckenlast Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_{0}} am Rand aus der Auflagerkraft des Treppenlaufs belastet ist
  • in Belastungsvariante III wird eine Podestplatte betrachtet die ausschließlich Streckenmoment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{0}} aus der elastischen Einspannung des Treppenlaufs belastet ist


Tafel zur Schnittgrößen Ermittlung von Podestplatten mit dreiseitig frei drehbar gelagerten Rändern [F 1] [F 2]
1 2 3 4 5 6 7 8 9 10
Belastungsvariante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {t_{P}}{b_{P} } } 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
1 I Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,m} = \frac{F_{d} \cdot t_{P}^{2}}{\chi} } 7,88 8,04 8,46 9,11 9,97 11,0 12,2 13,6
2 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{y,m} = \frac{F_{d} \cdot t_{P}^{2}}{\chi} } 8,92 10,5 13,0 16,5 21,2 27,5 35,7 46,1
3 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,r} = \frac{F_{d} \cdot t_{P}^{2}}{\chi} } 4,12 4,41 4,89 5,53 6,34 7,32 8,46 9,77
4 II Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,m} = \frac{F_{d} \cdot b_{P}}{\chi} } 12,6 10,5 9,60 9,20 9,40 9,60 10,2 10,9
5 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{y,m} = - \frac{F_{d} \cdot b_{P}}{\chi} } 200 91,0 52,5 40,1 33,2 29,4 26,9 25,0
6 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,r} = \frac{F_{d} \cdot b_{P}}{\chi} } 6,90 5,60 4,90 4,50 4,30 4,20 4,10 4,10
7 III Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{y,m} = \frac{m_{0}}{\chi} } 4,60 5,70 7,90 12,5 35,0 100 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \infty} -31
8 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{y,m} = - \frac{m_{0}}{\chi} } 2,10 2,20 2,50 3,10 4,00 5,10 6,50 8,00
9 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{x,r} = \frac{m_{0}}{\chi} } 2,20 2,35 2,50 2,65 2,74 2,80 2,85 2,90
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi} = Wert in der Tabelle
  • in Belastungsvariante I wird eine Podestplatte betrachtet die ausschließlich durch eine Gleichflächenlast Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_{d}} belastet ist
  • in Belastungsvariante II wird eine Podestplatte betrachtet die ausschließlich Streckenlast Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_{0}} am Rand aus der Auflagerkraft des Treppenlaufs belastet ist
  • in Belastungsvariante III wird eine Podestplatte betrachtet die ausschließlich Streckenmoment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_{0}} aus der elastischen Einspannung des Treppenlaufs belastet ist

Quellen

Normen



Fachliteratur
  1. 1,0 1,1 Beton-Kalender, Jahrgang 1980, Band 2, Abschnitt E, Abschnitt Treppen, Köseoglu, S.
  2. 2,0 2,1 Stahlbetonbau in Beispielen - Teil 2: Bemessung von Flächentragwerken nach EC 2 - Konstruktionspläne für Stahlbetonbauteile, Ralf Avak, René Conchon, Markus Aldejohann 2017 Auflage 5



Links



Seiteninfo
Quality-flag-white.gif
Status: Seite in Bearbeitung
-Stahlbetonbau]]