Brandschutznachweis Stahlbetonstütze (Bsp.): Unterschied zwischen den Versionen

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen
Zeile 20: Zeile 20:
 
===Randbedingungen<ref name="EC2">DIN EN 1992-1-2 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken. Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall. 2010-12</ref>===
 
===Randbedingungen<ref name="EC2">DIN EN 1992-1-2 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken. Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall. 2010-12</ref>===
  
::*<math>{{l}_{0,fi}}  \leq 3m</math>
+
*<math>{{l}_{0,fi}}  \leq 3m</math>
  
:::{|
+
:{|
 
|  || Da der Kopf und der Fuß der Stütze rotationsbehindert gelagert sind, ergibt sich die [[Heißbemessung Stahlbetonbau#Einspannung von Pendelstützen im Brandfall| Knicklänge für den Brandfall für eine Innenstütze]] mit:
 
|  || Da der Kopf und der Fuß der Stütze rotationsbehindert gelagert sind, ergibt sich die [[Heißbemessung Stahlbetonbau#Einspannung von Pendelstützen im Brandfall| Knicklänge für den Brandfall für eine Innenstütze]] mit:
 
|-
 
|-
Zeile 30: Zeile 30:
 
|}
 
|}
  
::*'''Bewehrungsgehalt ρ'''
+
*'''Bewehrungsgehalt ρ'''
:::<math>\rho = \frac{{{4,52 cm^2}}}{{{30 cm \cdot 30 cm}}} = 0,5 % \leq 4 %</math>
+
:<math>\rho = \frac{{{4,52 cm^2}}}{{{30 cm \cdot 30 cm}}} = 0,5 % \leq 4 %</math>
:::Die Randbedingung ist erfüllt.
+
:Die Randbedingung ist erfüllt.
  
 
===Schnittgrößen<ref name="Brandschutz EU">Dietmar Hosser; Jochen Zehfuß (Hrsg.): Brandschutz in Europa - Bemessung nach Eurocodes - 3., Überarbeitete und erweiterte Auflage 2017</ref>===
 
===Schnittgrößen<ref name="Brandschutz EU">Dietmar Hosser; Jochen Zehfuß (Hrsg.): Brandschutz in Europa - Bemessung nach Eurocodes - 3., Überarbeitete und erweiterte Auflage 2017</ref>===

Version vom 27. Juli 2023, 12:00 Uhr

Ein Beispiel für die Berechnung einer Stahlbeton-Innenstütze mit der Methode A des vereinfachten Verfahrens.

Aufgabenstellung

Brandschutznachweis Stahlbetonstütze (Bsp.).png
Brandschutznachweis Stahlbetonstütze (Bsp.)2.png
Brandschutznachweis Stahlbetonstütze (Bsp.)3.png

Gegeben

  • eine Stahlbeton-Innenstütze in einem ausgesteiften Bauwerk
  • Kopf und Fuß der Stütze sind rotationsbehindert (eingespannt)
  • l = 4m
  • h/b = 300/300
  • NEd = 400kN
  • vorhandene Bewehrung: 4Ø12 Längsbewehrung; Ø8 Bügelbewehrung alle 14 cm; As,vorh = 4,52 cm2

Gefordert

Für die Stahlbeton-Innenstütze wird eine Feuerwiderstandsdauer für 60 Minuten unter einer mehrseitigen Brandbeanspruchung gefordert.

Nachweis mit der Tabelle 5.2a der Methode A

Randbedingungen[1]

Da der Kopf und der Fuß der Stütze rotationsbehindert gelagert sind, ergibt sich die Knicklänge für den Brandfall für eine Innenstütze mit:
Die Randbedingung ist mit 2m ≤ 3m erfüllt.
  • Bewehrungsgehalt ρ
Die Randbedingung ist erfüllt.

Schnittgrößen[2]

erforderliche Querschnittsabmessungen nach der Tabelle 5.2a[2]

Brandschutznachweis Stahlbetonstütze (Bsp.)4.png
bmin. = 250mm
aerf. = 46mm

vorhandene Querschnittsabmessungen

bvorh. = 300mm
avorh. = 50mm
Die Stahlbeton-Innenstütze kann der Feuerwiderstandsklasse R60 zugeordnet werden.

vergleichende Berechnung mit mB Baustatik

Nachweis mit der Gleichung 5.7 der Methode A

Randbedingungen[2]

  • Achsabstand a:
Randbedingung erfüllt.
  • Stützenlänge:
Randbedingung erfüllt.
Randbedingung erfüllt.
Randbedingung erfüllt.

Gleichung 5.7[2]

Ermittlung der Einflussfaktoren[2]

  • mit:
Ausnutzungsgrad
Anzahl der Bewehrungsstäbe
Dauerstandfestigkeit nach DIN EN 1992-1-1
mechanischer Bewehrungsgrad

Ergebnis der Berechnung

Die Berechnung mit der Gleichung 5.7 ergibt für die Stahlbeton-Innenstütze eine Feuerwiderstandsdauer von 107,18 Minuten.

Vergleichsberechnung mit mB Baustatik

Brandschutznachweis Stahlbetonstütze (Bsp.)6.png

Die Berechnung der Stahlbeton-Innenstütze ergibt eine Feuerwiderstandsdauer von 164,9 Minuten. Damit kann die Stütze sogar der Feuerwiderstandsklasse R120 zugeordnet werden.

Erläuterung der Unterschiede zwischen der Handberechnung und mB-Baustatik

Bei der Handberechnung wurde zur Vereinfachung angenommen, dass die Stütze unter Normaltemperatur voll ausgelastet ist. Es gilt also NRd=NEd. Unter dieser Annahme wurden auch die Tabellenwerte des Tabellenverfahrens ermittelt.

In diesem Beispiel ist es jedoch so, dass die Stütze bei Normaltemperatur nicht voll ausgelastet ist. Dies bedeutet also, dass die eigentliche Tragfähigkeit der Stütze NRd deutlich größer ist, als in der Handberechnung bei der Berechnung des Lastausnutzungsfaktor μfi angenommen wurde.

Bei der Berechnung mit mB Baustatik wurde der Lastausnutzungsfaktor μfi hingegen mit der vollen Tragfähigkeit der Stütze berechnet. Es ergibt sich also ein viel geringerer Lastausnutzungsfaktor, als in der Handberechnung. Dies hat zur Folge, dass die Stahlbeton-Innenstütze, nach der Berechnung mit mB Baustatik, im Brandfall deutlich länger standhalten würde.

Da in der Aufgabenstellung jedoch nur eine Feuerwiderstandsdauer von 60 Minuten gefordert wurde, ist die Aufgabe dennoch auch mit der Handberechnung erfüllt. Wäre dies nicht der Fall, hätte die genaue Tragfähigkeit der Stütze bestimmt werden müssen.

Quellen

  1. DIN EN 1992-1-2 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken. Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall. 2010-12
  2. 2,0 2,1 2,2 2,3 2,4 Dietmar Hosser; Jochen Zehfuß (Hrsg.): Brandschutz in Europa - Bemessung nach Eurocodes - 3., Überarbeitete und erweiterte Auflage 2017


Seiteninfo
Quality-flag-orange.gif
Status: Seite fertig, ungeprüft