Durchstanzen: Unterschied zwischen den Versionen

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen
K
 
Zeile 1: Zeile 1:
{{Lesernavigation 5 Links
+
 
|Link1 = [[Hauptseite]]
 
|Link2 = [[Stahlbetonbau]]
 
|Link3 = [[:Kategorie:Grundlagen/Begriffe-Stahlbetonbau|Grundlagen/Begriffe]]
 
|Link4 = [[:Kategorie:MB-AEC Baustatik-Module Stahlbetonbau|MB-AEC-Module Stahlbetonbau]]
 
|Link5 = [[S510.de Stahlbeton-Einzelfundament|S510.de Stahlbeton-Einzelfundament]]
 
}}
 
 
<br />
 
<br />
  

Aktuelle Version vom 27. Oktober 2019, 20:29 Uhr


Allgemeines zum Durchstanzen

Wird eine konzentrierte Last auf eine verhältnismäßig kleine Einleitungsfläche eines Plattentragwerks (z. B. Deckenplatte oder Fundament) aufgebracht, so kommt es zu einem örtlichen Querkraftversagen [1].
Dies äußert sich bei relativ geringen Lasten zunächst durch auftretende Biegerisse in radialer Richtung. Wird die Last erhöht, so kommt es als Folge dessen zum Reißen des Betons in tangentialer Richtung (Querkraftrisse).
Durch die Vereinigung beider Rissformen zu Durchstanzrissen wird der Bruch eingeleitet. [2].
Dabei wird der betroffene Plattenbereich aus der übrigen Platte herausgetrennt und es entsteht der typische kegel- oder pyramidenförmige Körper. Diese Art des Versagens geschieht ohne eine ausgeprägte Vorankündigung. Es kommt zu einem fortschreitenden Kollaps der vollständigen Konstruktion [3].
Folglich ist der Nachweis einer ausreichenden Durchstanztragfähigkeit eines der maßgebenden Kriterien bei der Bemessung einer punktgestützten bzw. durch Einzellasten beanspruchten Deckenplatte. Da das Durchstanzen ein Sonderfall der Querkraftbeanspruchung darstellt, besteht ein Zusammenhang zwischen beiden Bemessungsansätzen [4].

Obwohl das Durchstanz- und das Biegetragverhalten sich gegenseitig beeinflussen (siehe Bild), sind die Nachweise jeweils separat zu führen. [5].

Rissbilder bei reiner Querkraft- und reiner Biegebeanspruchung


Die Durchstanztragfähigkeit wird durch Bauteileigenschaften wie

  • die Betonfestigkeit,
  • die Querschnittabmessungen,
  • die Bewehrungsmenge in der Zugzone,
  • eine durch Vorspannung entstehende Normaldruckkraft und
  • die vorgesehene Durchstanzbewehrung maßgebend beeinflusst [6].


Bei der Nachweisführung müssen folgende Versagen verursachende Komponenten einbezogen werden [2]:

  • eine Überschreitung der Betonzugfestigkeit,
  • ein Versagen der Betondruckzone,
  • ein örtliches Verbundversagen der Biegezugbewehrung
  • und eine unzureichende Verankerung der Durchstanzbewehrung



Der allgemein zu führende Nachweis besagt, dass die auf einen Rundschnitt (besser: die Rundschnittfläche) bezogene einwirkende Querkraft geringer ausfällt, als der Bemessungswiderstand .

Der allgemeine Nachweis lautet wie folgt:


wobei


- Bemessungswert der einwirkenden Querkraft je Flächeneinheit im betrachteten Rundschnitt
- Bemessungswert des Durchstanzwiderstandes je Flächeneinheit im betrachteten Rundschnitt


Bei der Ermittlung des Durchstanzwiderstandes unterscheidet man

  • Bauteile ohne Durchstanzbewehrung
  • Bauteile mit Durchstanzbewehrung


Bemessungswert der einwirkenden Querkraft


Genauere Informationen zur Ermittlung des Bemessungswertes der einwirkenden Querkraft finden Sie hier: Durchstanzen - Bemessungswert der einwirkenden Querkraft

Bauteile ohne Durchstanzbewehrung

Versagensmechanismus bei einem Bauteil ohne Durchstanzbewehrung

Bei Plattentragwerken ohne Durchstanzbewehrung (siehe Bild) muss nachgewiesen werden, dass der Bemessungswert der einwirkenden Querkraft im kritischen Rundschnitt den Bemessungswert der Durchstanztragfähigkeit ohne Durchstanzbewehrung nicht überschreitet.
Die Bedingung lautet:


wobei


- Bemessungswert der einwirkenden Querkraft je Flächeneinheit im kritischen Rundschnitt
- Bemessungswert des Durchstanzwiderstandes je Flächeneinheit einer Platte ohne Durchstanzbewehrung


Ist der Bemessungswiderstand größer als der Bemessungswert der Querkraft , so ist eine Durchstanzbewehrung vorzusehen, welche beispielsweise durch Bügel gebildet werden kann. Alternativ kann auch durch das Vergrößern der Längsbewehrung die Durchstanztragfähigkeit gesteigert werden.

Genauere Informationen zum Nachweis für Bauteile ohne Durchstanzbewehrung : Punktförmig gestützte Platten und Fundamente ohne Durchstanzbewehrung

Bauteile mit Durchstanzbewehrung

Wird Durchstanzbewehrung benötigt, so muss auf mehreren Rundschnitten ui weitere Querkraftnachweise geführt werden[2].

Versagensmechanismus bei Bauteilen mit Durchstanzbewehrung


Als Durchstanzbewehrung können folgende Bewehrungselemente zum Einsatz kommen:

  • Bügel
  • aufgebogene Stäbe
  • S-Haken
  • Dübelleisten
  • spezielle Gitterträger

Je nach verwendeter Durchstanzbewehrung sind beim Verlegen der Bewehrung weitere Regel zu beachten.
Beim Nachweis von Bauteilen mit Durchstanzbewehrung sind folgende Einzelnachweise zu führen (siehe Bild) [2]:

  • Betonversagen: die maximale Schubspannung darf nicht größer ausfallen, als der Bemessungswert des maximalen Durchstanzwiderstands .



  • Stahlversagen: die Tragfähigkeit des Querschnitts mit Durchstanzbewehrung muss in jedem Rundschnitt gewährleistet sein.



  • Querkrafttragfähigkeit ohne Durchstanzbewehrung: außerhalb des durchstanzbewehrtem Bereichs muss die Querkrafttragfähigkeit ohne Durchstanzbewehrung nachgewiesen werden.



Genauere Informationen zu dem Nachweis für Bauteile mit Durchstanzbewehrung: Punktförmig gestützte Platten und Fundamente mit Durchstanzbewehrung

Beispiel: Berechnung einer Flachdecke mit einer Rundstütze

Ein Berechnungsbeispiel findet man auf der Seite: Flachdecke mit einer Rundstütze (Bsp.)

Quellen

  1. K. Zilch F. Fingerloos, J. Hegger. Eurocode 2 für Deutschland. Ernst + Sohn, Beuth-Verlag, S. 263-281, 1. Aufl. edition, 2012
  2. 2,0 2,1 2,2 2,3 Prof. Dr.-Ing. Rudolf Baumgart. Durchstanznachweis nach EC 2. Skript Hochschule Darmstadt-University of Applied Sciences, 2012
  3. Dr.-Ing. Markus Staller/Dipl.-Ing. Christian Juli. Durchstanzen von Flachdecken und Fundamenten. Hochschule München- Einführung in den Eurocode 2 mit Praxisbeispielen und Konstruktion im Stahlbeton- und Spannbetonbau, 2012
  4. Prof. Dr-Ing. Jens Minnert. Durchstanzen nach EC 2-1-1 und EC 2-1-1/NA. mb AEC- Fit für den Eurocode, 2012
  5. Prof. Dipl.-Ing. Frank Prietz. Durchstanzen nach DIN EN 1992-1-1 +NA.Skript
  6. Prof Dr.-Ing. Guido Bolle. Skript: Modul - Stahlbetonbau 2


Seiteninfo
Quality-flag-green.gif
Status: Seite geprüft, inhaltlich OK