Heißbemessung Stahlbetonbau: Unterschied zwischen den Versionen

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen
Zeile 159: Zeile 159:
 
===Mechanische Eigenschaften===
 
===Mechanische Eigenschaften===
 
Die temperaturabhängigen Veränderungen der mechanischen Baustoffwerte spiegeln sich in den Spannungs- Dehnungsbeziehungen wieder. Diese sind Grundlage der brandschutztechnischen Bauteil- und Tragwerksanalyse. Das Festigkeits- und Verformungsverhalten von Baustoffen bei erhöhten Temperaturen wird im Eurocode 2-1-2, Abschnitt 3 vereinfacht, aber für den Brandschutznachweis ausreichend dargestellt. Anhand der Darstellungsweise des Baustoffverhaltens, wird an die Bemessungsgrundlagen bei Normaltemperatur angeknüpft.<ref name="Betonkalender" />
 
Die temperaturabhängigen Veränderungen der mechanischen Baustoffwerte spiegeln sich in den Spannungs- Dehnungsbeziehungen wieder. Diese sind Grundlage der brandschutztechnischen Bauteil- und Tragwerksanalyse. Das Festigkeits- und Verformungsverhalten von Baustoffen bei erhöhten Temperaturen wird im Eurocode 2-1-2, Abschnitt 3 vereinfacht, aber für den Brandschutznachweis ausreichend dargestellt. Anhand der Darstellungsweise des Baustoffverhaltens, wird an die Bemessungsgrundlagen bei Normaltemperatur angeknüpft.<ref name="Betonkalender" />
 +
 
Die charakteristischen Festigkeiten bei Normaltemperatur, fck für Beton und fyk für Stahl, sind dabei Eingangswerte für die Spannungs-Dehnungsbeziehungen unter Temperatureinfluss.<ref name="Brandschutz EU" />
 
Die charakteristischen Festigkeiten bei Normaltemperatur, fck für Beton und fyk für Stahl, sind dabei Eingangswerte für die Spannungs-Dehnungsbeziehungen unter Temperatureinfluss.<ref name="Brandschutz EU" />
Die Temperaturabhängigen Spannungs-Dehnungsbeziehungen erhalten alle Verformungen, welche während der Aufheizphase entstehen. Dabei sind nicht nur die temperaturabhängigen elastischen und plastischen Dehnungen, sondern auch instationäre Hochtemperatur-Kriechanteile integriert. Im Gegensatz zum Normaltemperaturbereich fasst der Begriff ,,Kriechen“ im Hochtemperaturbereich, die nicht elastischen, lastabhängigen Verformungsanteile zusammen, welche mit steigender Temperatur größer werden. Diese Hochtemperatur-Kriechanteile sind sehr viel größer, als die Temperaturabhängigen elastischen und plastischen Dehnungen. Somit darf die im Ursprung der Spannungs-Dehnungsbeziehung liegende Tangentenneigung, nicht als temperaturabhängiges Elastizitätsmodul der Baustoffe interpretiert werden. Dieser E-Modul ist deutlich größer. Im Vergleich zu den Spannungs-Dehnungsbeziehungen des Eurocodes führt er zu einem deutlich steileren Anstieg, was einem viel steiferen Baustoffverhalten entspricht.<ref name="Brandschutz EU" />
+
Die Temperaturabhängigen Spannungs-Dehnungsbeziehungen erhalten alle Verformungen, welche während der Aufheizphase entstehen. Dabei sind nicht nur die temperaturabhängigen elastischen und plastischen Dehnungen, sondern auch instationäre Hochtemperatur-Kriechanteile integriert. <br/> Im Gegensatz zum Normaltemperaturbereich fasst der Begriff ,,Kriechen“ im Hochtemperaturbereich, die nicht elastischen, lastabhängigen Verformungsanteile zusammen, welche mit steigender Temperatur größer werden. Diese Hochtemperatur-Kriechanteile sind sehr viel größer, als die Temperaturabhängigen elastischen und plastischen Dehnungen. Somit darf die im Ursprung der Spannungs-Dehnungsbeziehung liegende Tangentenneigung, nicht als temperaturabhängiges Elastizitätsmodul der Baustoffe interpretiert werden. Dieser E-Modul ist deutlich größer. Im Vergleich zu den Spannungs-Dehnungsbeziehungen des Eurocodes führt er zu einem deutlich steileren Anstieg, was einem viel steiferen Baustoffverhalten entspricht.<ref name="Brandschutz EU" />
 +
 
 
Die Dehnung unter hohen Temperaturen nimmt schon bei geringem Spannungszuwachs deutlich zu. Daraus ergibt sich wiederum, dass die Festigkeit von Beton und Stahl unter hohen Temperaturen abnimmt.
 
Die Dehnung unter hohen Temperaturen nimmt schon bei geringem Spannungszuwachs deutlich zu. Daraus ergibt sich wiederum, dass die Festigkeit von Beton und Stahl unter hohen Temperaturen abnimmt.
  

Version vom 4. Juli 2023, 21:43 Uhr

Die Heißbemessung im Stahlbetonbau bezeichnet den rechnerischen Nachweis von Bauteilen oder Tragwerken aus Stahlbeton, welche durch einen Brand beansprucht werden.[1] Die Bemessungsverfahren der Brandschutznachweise werden im Brandschutzteil des Eurocodes Teil 2, der DIN EN 1992-1-2, geregelt.[2]

Hinweis :
  • Die auf dieser Seite behandelten Themen basieren auf den Grundlagen der Heißbemessung, welche auf der Seite Heißbemessung behandelt werden.


Materialeigenschaften - Bauteilwiderstände

Bei hohen Temperaturen ändern sich die Materialeigenschaften der Bauteile. Auf der Widerstandsseite müssen dabei die thermischen und die mechanischen Materialeigenschaften betrachtet werden.[3]

Thermische Eigenschaften

Zu den thermischen Eigenschaften gehören die spezifische Wärme, die Wärmeleitfähigkeit und die Rohdichte. Diese werden für die Berechnung der Temperaturveränderung innerhalb von Bauteilen aus Beton und Stahl, welche brandbeansprucht sind, benötigt. Hiermit kann die Temperatur in einem bestimmten Punkt des Bauteils bestimmt werden, was wiederum für einen Teil der Heißbemessung von Nöten ist. Außerdem muss die Dehnung infolge der Temperaturänderung des Materials, beachtet werden.[3]

  • Wärmekapazität cp(θ)
Die spezifische Wärme oder auch Wärmekapazität genannt, beschreibt das Vermögen eines Materials, Wärmeenergie aufzunehmen. Mit steigender spezifischer Wärmekapazität steigt auch die benötigte Energiemenge, welche zur Erwärmung von 1 kg Masse um 1 K erforderlich ist.[2]
Spezifische Wärme von Beton nach DIN EN 1992-1-2
Spezifische Wärme von Stahl nach DIN EN 1993-1-2
Bei Beton spielt der Feuchtegehalt eine entscheidende Rolle. Da Wasser mehr Energie zum erwärmen benötigt als Beton, läuft die Erwärmung des Bauteils am Anfang langsamer ab, bis das Wasser verdampft ist.[4]
Im Temperaturbereich von 100 – 200°C kommt es zur Verdampfung von Porenwasser. Durch eine Erhöhung der spezifischen Wärme wird die dafür verbrauchte Wärmeenergie berücksichtigt. Die benötigte Energiemenge ist dabei von der relativen Betonfeuchte abhängig.[3] Danach ist nur noch der Widerstand des Betons vorhanden.











Auch bei Betonstahl ändert sich die spezifische Wärmekapazität. Vergleicht man diese mit der Wärmekapazität von Beton, fällt auf, dass diese im Vergleich viel geringer ausfällt.[5] Die durchschnittliche Wärmekapazität von Betonstahl liegt ist mit 600J/kg K nur halb so hoch ist wie bei Beton. Infolge dessen erhitzt sich der Stahl deutlich schneller, was zu Spannungen zwischen den Baustoffen im Bauteil führen kann.[4]









  • thermische Leitfähigkeit λ [W/(m*K)]
Die Kapazität eines Materials, Wärme zu transportieren, wird als Wärmekapazität oder auch Wärmeleitfähigkeit bezeichnet.[2] Sie beschreibt den Wärmestrom, welcher durch 1m3 Material bei einer Temperaturänderung von 1K fließt[6] und sagt somit aus, wie schnell Wärme in das Innere von Bauteilen dringt und wie schnell dieses wieder abkühlt. Sie wird in W/[m K] angegeben. Je geringer diese ist, desto besser das Dämmvermögen.[7]
Wärmeleitfähigkeit von Beton nach DIN EN 1992-1-2
Die thermische Leitfähigkeit von Beton wird mit einem oberen und unteren Grenzwert angegeben.[2] Im nationalen Anhang EC 2-1-2 [2-2] wird die Verwendung des oberen Grenzwertes vorgeschrieben. Bei Beton nimmt die Wärmeleitfähigkeit mit steigender Temperatur ab. Grundsätzlich ist die Größe auch vom Wassergehalt abhängig. Dieses verdunstet bei steigenden Temperaturen und die hohlräume füllen sich mit Luft, welche eine sehr geringe Wärmeleitfähigkeit aufweist.[3] Zudem kann die thermische Leitfähigkeit durch Zuschläge beeinflusst werden. Baustoffe wie Bims oder Blähton verringern die Wärmeleitfähigkeit von Beton.[6]
Wärmeleitfähigkeit von Stahl nach DIN EN 1993-1-2











Stahl weist im Gegensatz zu Beton eine viel höhere Wärmeleitfähigkeit auf. Dies bedeutet, dass der Betonstahl seine Wärme schneller abgibt, in diesem Fall direkt an den Beton. Infolge dessen wird dieser schneller erwärmt.[5]








  • thermische Dehnung ε
Die Abmessungen eines Körpers nehmen bei steigender Temperatur zu. Diese Reaktion wird als Temperaturdehnung ε bezeichnet. Bei ε handelt es sich um eine grundsätzlich temperaturabhängige Größe.[2] Wie man im Diagramm erkennen kann, kommt es bei Beton und Betonstahl zu unterschiedlichen Ausdehnungen bei erhöhter Temperatur. Dies führt zu teils erheblichen Spannungen im Bauteil, welche bei der Bemessung beachtet werden müssen.
thermische Dehnung von Stahlbeton nach DIN EN 1992-1-2
Bei einer Temperaturerhöhung von Beton, kann es je nach Bestandteil des Betons zu einem teils sprunghaften Volumenanstieg kommen. Ein Beispiel dafür ist Quarz. Wenn es die Temperatur 573°C erreicht, kommt es zum sogenannten Quarzsprung. Dabei nimmt das Quarzvolumen sprunghaft um 0,8 % zu. Die Temperaturdehnung für Beton wird mit εc(θ) bezeichnet.[2]
thermische Dehnung von Stahl nach DIN EN 1993-1-2










Stahl hingegen dehnt sich anders aus als Beton. Erreicht die Temperatur den Bereich zwischen 750 – 860 °C kommt es zu einer Gefügeumwandlung. Die Dehnung von Betonstahl wird mit εs(θ) bezeichnet.[2]










  • Rohdichte ρ[kg/m3]
Rohdichte von Beton unter Temperatureinfluss[3]
Das Porensystem im Beton bietet Platz für Flüssigkeiten wie zum Beispiel Wasser. Die Rohdichte von Beton ist somit vom Wassergehalt des Porensystems abhängig. Allerdings fällt die Veränderung der Dichte bei der Erwärmung von Beton nur relativ gering aus.[2]







Mechanische Eigenschaften

Die temperaturabhängigen Veränderungen der mechanischen Baustoffwerte spiegeln sich in den Spannungs- Dehnungsbeziehungen wieder. Diese sind Grundlage der brandschutztechnischen Bauteil- und Tragwerksanalyse. Das Festigkeits- und Verformungsverhalten von Baustoffen bei erhöhten Temperaturen wird im Eurocode 2-1-2, Abschnitt 3 vereinfacht, aber für den Brandschutznachweis ausreichend dargestellt. Anhand der Darstellungsweise des Baustoffverhaltens, wird an die Bemessungsgrundlagen bei Normaltemperatur angeknüpft.[2]

Die charakteristischen Festigkeiten bei Normaltemperatur, fck für Beton und fyk für Stahl, sind dabei Eingangswerte für die Spannungs-Dehnungsbeziehungen unter Temperatureinfluss.[3] Die Temperaturabhängigen Spannungs-Dehnungsbeziehungen erhalten alle Verformungen, welche während der Aufheizphase entstehen. Dabei sind nicht nur die temperaturabhängigen elastischen und plastischen Dehnungen, sondern auch instationäre Hochtemperatur-Kriechanteile integriert.
Im Gegensatz zum Normaltemperaturbereich fasst der Begriff ,,Kriechen“ im Hochtemperaturbereich, die nicht elastischen, lastabhängigen Verformungsanteile zusammen, welche mit steigender Temperatur größer werden. Diese Hochtemperatur-Kriechanteile sind sehr viel größer, als die Temperaturabhängigen elastischen und plastischen Dehnungen. Somit darf die im Ursprung der Spannungs-Dehnungsbeziehung liegende Tangentenneigung, nicht als temperaturabhängiges Elastizitätsmodul der Baustoffe interpretiert werden. Dieser E-Modul ist deutlich größer. Im Vergleich zu den Spannungs-Dehnungsbeziehungen des Eurocodes führt er zu einem deutlich steileren Anstieg, was einem viel steiferen Baustoffverhalten entspricht.[3]

Die Dehnung unter hohen Temperaturen nimmt schon bei geringem Spannungszuwachs deutlich zu. Daraus ergibt sich wiederum, dass die Festigkeit von Beton und Stahl unter hohen Temperaturen abnimmt.




Die Spannungs-Dehnungsbeziehung beim Beton wird durch zwei Parameter bestimmt, die Druckfestigkeit fc,θ und die Stauchung εc1,0 (abzulesen am abfallenden Kurventeil).
Ein weiterer Einflussfaktor ist der verwendete Zuschlagsstoff. Unterschieden werden muss hier zwischen quarzhaltigen und kalksteinhaltigen Zuschlägen. Das Diagramm ist für quarzhaltige Zuschläge aufgestellt, da diese Werte im Gegensatz zu den kalksteinhaltigen Zuschlägen geringer ausfallen. Die Tabelle 3.1 im EC2-1-2 gibt die Hauptparameter für die beiden Zuschlagsstoffe an. (siehe auch Materialeigenschaften von Beton und Stahl (aus Abschnitt 3, EC 2-1-2))
Diese Abnahme der Festigkeiten wird im EC2 mit Reduktionsbeiwerten berücksichtigt. Bei Beton ist der Beiwert kc,θ für die Betondruckfestigkeit abhängig von der Bauteiltemperatur und dem Zuschlagsstoff. Der Beiwert kann aus dem unten stehenden Diagramm aus der DIN EN 1992 Abs. 4.2.4.2 entnommen werden. Außerdem ist zu beachten, dass die Zugfestigkeit des Betons bei steigender Temperatur sehr stark abnimmt und damit nicht mehr zum Ansatz gebracht werden kann. Dies gilt vor allem für die Bereiche zwischen den Rissen in den äußeren Bewehrungslagen.
Durch die Abnahme des E-Moduls nimmt die Verformungsfähigkeit von 2,5‰ bei 20°C auf 10-20‰ bei 600°C zu, was zu einer ständigen Umlagerung von Spannungen führt. Daraus resultiert der Abfall der aufnehmbaren Druckfestigkeit.[8]

Betonstahl
Die Spannungs-Dehnungsbeziehung beim Betonstahl ist abhängig von der Dehnung und der Temperatur. Bei Stahl spielt die Herstellung eine entscheidende Rolle. Es wird unterschieden zwischen warm- und kaltgewalztem Stahl. Die Tabellen 3.2 im EC2-1-2 geben die Parameter für beide Herstellungsarten an.
Da sich der Betonstahl unter Hitzeeinwirkung ausdehnt und gleichzeitig an Festigkeit verliert, wurde im EC2-1-2 eine kritische Stahltemperatur festgelegt. Diese liegt beim Betonstahl B500 bei 500°C und liegt auf der sicheren Seite. Dabei ist die kritische Dehngeschwindigkeit ε’=10-4 s-1 nur von der Stahlsorte und dem Belastungsgrad abhängig, jedoch nicht von der Erwärmungsgeschwindigkeit, wodurch die kritische Temperatur generell festgelegt werden kann. Analog zum Beton gibt es für Betonstahl auch einen Reduzierungsfaktor ks für die charakteristische Festigkeit fyk in Abhängigkeit zur Stahltemperatur.[11]


Materialeigenschafen aus EC2-1-2

Eine tabellarische Übersicht über die Materialeigenschaften aus dem EC2-1-2 Abschnitt 3 ist hier zu finden.
Detaillierte Informationen zu den Materialkennwerten aus dem EC sind hier zu finden.
Detaillierte Informationen zu den Abminderungsbeiwerten für Beton und Betonstahl aus dem EC sind hier zu finden.

Bemessungsverfahren im Stahlbetonbau nach EC 2-1-2

Im EC2 werden drei Nachweisverfahren angegeben, die sich in einzelne Verfahren unterteilen lassen. Grundlage der Nachweise sind die mechanischen und thermischen Eigenschaften sowie die Einheitstemperaturkurve. Die Ermittlung der Lasten erfolgt nach den bekannten Regeln.

Stufe 1: Tabellenverfahren

Beim Bemessungsverfahren mithilfe tabellarischer Daten werden in der Regel Querschnittsabmessungen des zu untersuchenden Bauteils verglichen. Die tabellarischen Daten wurden aus den sogenannten Normbrandversuchen ermittelt. Die im EC2-1-2, Abschnitt 5 enthaltenen Tabellen stellen die Mindestwerte der Querschnittsabmessungen und Achsabstände der Bewehrung in Abhängigkeit von der Feuerwiderstandsdauer dar. Die Daten sind bis zu einer Widerstandsdauer von 240 Minuten tabelliert und liegen stehts auf der sicheren Seite.

Hinweis :
  • Die Tabellenwerte gelten für Normalbeton (2 000 bis 2 600 kg/m³, siehe EN 206-1) mit quarzhaltigen Zuschlägen.
  • Werden in Balken oder Platten kalksteinhaltige Zuschläge verwendet, darf die Mindestabmessung des Querschnitts um 10 % verkleinert werden.
  • Bei Anwendung der Tabellenwerte brauchen keine weiteren Überprüfungen hinsichtlich Schub- und Torsionstragfähigkeit und Verankerung der Bewehrung (EC2-1-2, siehe Absch. 4.4 [10]) durchgeführt werden.
  • Bei Anwendung der Tabellenwerte brauchen mit Ausnahme der Oberflächenbewehrung ( EC2-1-2, siehe Absch. 4.5.1 [10] ) keine weiteren Überprüfungen hinsichtlich des Abplatzens durchgeführt werden.


Der Eurocode 2-1-2 enthält Bemessungstabellen für:

  1. Stützen mit Rechteck- oder Kreisquerschnitten bei ein- und mehrseitiger Brandbeanspruchung: Methode A, Methode B
  2. tragende und nichttragende Wände.
  3. Balken mit Rechteck- und I-Querschnitt bei drei- oder vierseitiger Brandbeanspruchung.
  4. ein- oder zweiachsig gespannte Platten, Durchlaufplatten, Flachdecken und Rippendecken.


Stufe 2: vereinfachte Verfahren

Es ist bekannt, dass sich bei Brandbeanspruchung die Materialeigenschaften, bsw. die Tragfähigkeit, in Abhängigkeit der Temperaturen verringern. Die in EC 2-1-2 enthaltenen vereinfachten Rechenverfahren beschreiben die Verringerung der Tragfähigkeit von Bauteilen unter Brandbeanspruchung annähernd durch eine temperaturabhängige Verkleinerung des Querschnitts und eine temperaturbedingte Abminderung der Materialeigenschaften beim Brand.

Eine Verringerung des Betonquerschnitts berücksichtigt, dass die äußeren Betonoberflächen, die dem Brand direkt ausgesetzten sind, aufgezehrt werden und für die Tragfähigkeit nicht mehr angesetzt werden können. Um den Tragfähigkeitsnachweis, analog dem Nachweis für Normaltemperatur nach DIN EN 1992-1-1, zu führen, muss für den gedanklich verringerten Betonquerschnitt lediglich die Festigkeit von Beton und Bewehrungsstahl temperaturabhängig mit den Beiwerten Kc(θ) bzw. Ks(θ) abgemindert werden.

Zur Ermittlung der benötigten Querschnittstemperaturen können die zusammengestellten Diagramme mit Temperaturprofilen im EC 2-1-2 (Anhang A) verwendet werden. Diese Profile dürfen nur für Wände, Platten, Balken und Stützen mit den üblichen Querschnittsformen bei Brandbeanspruchung nach der Einheitstemperaturzeitkurve angewendet werden. Nachdem die reduzierten Betonquerschnitte und die temperaturabhängigen Abminderungen der Betonfestigkeit bestimmt wurden, stehen nach EC 2-1-2 Anhang B zwei Verfahren zur Bemessung zur Verfügung.


  • Zum einen gibt es die Zonenmethode (nach EC 2-1-2 Anhang B.2), die für Druckglieder im nationalen Anwendungsdokument nur mit zusätzlichen Ausnahmen nach Cylok und Achenbach geführt werden darf.


Hinweis :
  • Die Zonenmethode darf für Bauteile, die auf Biegung mit oder ohne Normalkraft beansprucht werden, ohne zusätzliche Annahmen angewandt werden.


  • Zum anderen gibt es die sogenannte 500 °C- Isothermen-Methode im Anhang B.1, die nach nationalem Anhang für die Anwendung in Deutschland nicht zugelassen ist.


Achtung :
  • In den informativen Anhängen C bis E werden noch weitere vereinfachte Rechenverfahren angeboten. Hiervon dürfen gemäß EC2-1-2 [12] in Deutschland nur die Verfahren im Anhang E für statisch bestimmt gelagerte und durchlaufende Balken und Platten angewandt werden, bei denen die Tragfähigkeit im Brandfall wesentlich durch temperaturabhängige Festigkeitsabnahme und die kritische Temperatur der Feldbewehrung bestimmt wird.


Varianten des vereinfachten Verfahrens

Temperaturprofile (aus Anhang A des EC 2-1-2)
Zonenmethode nach DIN EN 1992-1-2
Isothermen-Methode nach DIN EN 1992-1-2
Erweiterte Zonenmethode nach Cyllok und Aschenbach

Stufe 3: allgemeine Verfahren


Bei dem allgemeinen Rechenverfahren wird über eine rechnerische Simulation das Trag- und Verformungsverhalten brandbeanspruchter Einzelbauteile, Teil- oder Gesamttragwerke mit beliebigen Querschnittsformen, bei voller oder lokaler Temperaturbeanspruchung, ermittelt. Es erfordert, im Vergleich zum tabellarischen Nachweis oder zum vereinfachten Rechenverfahren, einen größeren Aufwand in der Berechnung. Außerdem ist die Prüfbarkeit der Ergebnisse nur mit einer Gegenrechnungen zu kontrollieren.

Insbesondere für eine statisch unbestimmte Konstruktion, bei denen das Verhalten des Gesamtsystems nicht durch Versuche am Teilsystem bestimmt werden kann, ist die numerische Modellierung und rechnerische Nachweisführung praktisch die einzige Möglichkeit, die Feuerwiderstandsdauer des Tragwerks zu bestimmen. Gerade wegen des Anspruchs der Allgemeingültigkeit und die Korrektheit müssen die allgemeinen Rechtsverfahren kritisch überprüft werden.[13]

Neben einer möglichen Inkorrektheit des Programms, können Eingabedaten problemspezifisch nicht richtig oder nicht sinnvoll für zutreffende Bemessungsereignisse eingegeben werden. Sofern als Rechengrundlage nicht die richtigen Materialgesetze oder Brandbeanspruchung im Programmcode fest hinterlegt sind, können ebenfalls gravierende Abweichungen entstehen.
Aus diesem Grund wurde im nationalen Anhang CC zur DIN EN 1991-1-2/NA [14] Validierungs- und Testbeispiele auf Basis eines Abschlussberichts[15]erstellt, mit denen die Überprüfung der Anwendbarkeit des Rechenprogramms, für die die brandschutztechnische Bemessung von Bauteilen und Tragwerken, möglich ist. Damit ist ein Rückschluss auf reale Tragwerke umsetzbar. Für mehr Informationen zum Thema Validierung von Rechenprogrammen siehe: [13] [15] [16] [17]


Hinweis :
  • Der nationale Anhang CC [14] sieht vor, dass vom Ersteller eines Rechenprogramms zur Durchführung von Nachweisen nach den allgemeinen Rechenverfahren, vor der Anwendung des Programms für bauordnungsrechtliche relevante Brandschutznachweise, die Validierungsbeispiele eigenständig berechnet werden sollen. Diese Musterberechnung soll, unter Verwendung der im Anhang CC enthaltenen tabellarischen Übersichten, die im Rahmen der Validierung durch den Programmhersteller erzielten Ergebnisse in einer Dokumentation erstellt werden und dem Prüfingenieur bzw. Prüfsachverständigen neben den geführten Nachweisen in einer Dokumentation vorgelegt werden. Eine Abweichung von Musterergebnissen sollte innerhalb der angegebenen Grenzbereiche liegen.


Die Berechnung erfolgt in zwei Schritten:
Der erste Schritt ist die thermische Analyse. Dabei werden die Temperaturverteilung und die Temperaturentwicklung innerhalb des betrachteten Bauteils mittels Finiten Elementen ermittelt. Somit ergeben sich zum einen die Brandgaszeittemperaturen, aus denen die Temperaturzeitkurve ermittelt wird. Zum anderen ergeben sich daraus die Isothermen, mit denen die Bauteiltemperaturen ermittelt werden können. Diese geben, im Gegensatz zu den Tabellen des Anhangs A in EC2-1-2, den Zustand des konkret vorliegenden Bauteils an. [9]
Weiterführende Informationen für die thermische Analyse sind hier zu finden.

Der zweite Schritt ist die mechanische Analyse. Dabei wird das Trag- und Verformungsverhalten unter Brandbeanspruchung untersucht. Das Ziel ist die Ermittlung der mechanischen Einwirkung Efi,d,t und der temperaturabhängigen Beanspruchbarkeit Rfi,d,t. Die Einwirkungen resultieren aus äußeren Belastungen, thermischen Einwirkungen wie Zwängungen aufgrund unterschiedlicher Erwärmung des Bauteils, und nichtlinearen Einflüssen aus der Berechnung nach Theorie II. Ordnung.
Der Nachweis wird auf Grundlage der ermittelten Informationen nach den üblichen Bedingungen der Kaltbemessung durchgeführt. Grundsätzlich gilt auch hier:   Ed,fi < Rd,fi [9]
Weiterführende Informationen für die mechanische Analyse sind hier zu finden.

Nebenwirkungen bei Brandbeanspruchung

Betonabplatzungen

Unter schnell ansteigenden Temperaturen steigt die Gefahr, dass Teile der äußeren Schichten eines Stahlbetonbauteils abplatzen. Das gebundene Wasser im Beton geht bei steigender Temperatur in den gasförmigen Zustand über und versucht aus dem Beton zu entweichen. Kann der Wasserdampf aufgrund von dichtem Betongefüge nicht schnell genug entweichen, beispielsweise bei hochfesten Betonen, erhöht sich die Wahrscheinligkeit von Betonabplatzungen. Die größte Gefahr tritt in den ersten 10 bis 30 Minuten auf, weil in diesem Zeitraum der größte Temperaturanstieg zu verzeichnen ist.
Bei Normalbeton ist die Wahrscheinlichkeit für Betonabplatzungen auf dünne Bauteile begrenzt. Für Betondeckungen über 60mm sollte Netzbewehrung eingelegt werden. Um das Abplatzen bei hochfestem Beton zu vermeiden, sollten dem Beton Fasern beigefügt werden. [18]
Betonabplatzung nach EC2-1-2 Abschnit 4.5

Einfluss der Dehnunen auf das statische System

Da die starken Dehnungen, sowohl des Betons als auch des Stahls, große Verformungen und Zwängungen verursachen, sind diese besonders zu berücksichtigen. Sie verstärken die Rissbildung in Zustand II. Außerdem ist eine realistische Erfassung der Verformungen bei Bauteilen notwendig, die nach Theorie II. Ordnung berechnet werden, wie zum Beispiel Stützen. Die Dehnungen und die daraus resultierenden Verformungen werden durch die Theorie II. Ordnung zusätzlich verstärkt, was zu großen Verschiebungen am System führt und damit auch zu hohen Schnittkräften.
Wenn man eine Pendelstütze unter Brandbeanspruchung beobachtet, versucht diese sich auszudehnen. Das führt bei Stützen zwischen zwei Geschossen zu einer Einspannung am Kopf und Fuß der Stütze, da sie sich in der Länge nicht frei bewegen kann. Diese Veränderung des Systems bewirkt eine neue Knicklänge von der halben Stützenlänge und sollte daher unbedingt in den Bemessungen einer solchen Pendelstütze berücksichtigt werden.
Unabhängig vom Bauteiltyp verursachen die Dehnungen bei nichtsymmetrischer Beflammung Spannungen innerhalb des Bauteils. Durch die unterschiedliche Erwärmung der Seiten behindern sich die Bereiche gegenseitig in der Ausdehnung, wodurch Kräfte freigesetzt werden. Bei Kragstützen führt das beispielsweise bei dreiseitiger Beanspruchung zu einer verstärkten Biegung.

Einspannung von Pendelstützen im Brandfall

Einspannung einer Pendelstütze im Brandfall


Nach EC2-1-2 NA AA.4 darf die Einspannung im Brandfall bei Pendelstützen angesetzt werden. Die Einspannung ist als volle Einspannung anzusehen. Die Erleichterung gilt nur für Stahlbetonstützen in ausgesteiften Gebäuden.
Es wird zwischen Dachgeschossen und Zwischengeschossen unterschieden.
Für Zwischengeschosse (Regelgeschosse) gilt für die Knicklänge im Brandfall:
Für andere Geschosse, beispielsweise Dachgeschosse, gilt für die Knicklänge im Brandfall: . [11]


Berechnung von Stahlbetonbauteilen mit Softwarelösungen

Die plausiblen Eingaben der Parameter in die Berechnungsprogramme ist bei der Bemessung von Stahlbetonbauteilen entscheidend für das Ergebnis. Insbesondere bei der Heißbemessung haben kleine Änderungen große Auswirkungen auf beispielsweise die erforderliche Bewehrung.
Bei Stahlbetonstützen ist aufgrund des statischen Systems die Empfindlichkeit auf Ausmitten und Steifigkeiten generell sehr hoch. Bei der Heißbemessung von Stahlbetonstützen verstärkt sich der Effekt noch weiter. Durch die Reduzierung der Steifigkeiten und Druck- bzw Zugfestigkeiten von Beton und Stahl ergeben sich bei der Berechnung mittels Theorie II. Ordnung nochmal größere Verformungen. Diese erzeugen widerum größere Schnittkräfte, die von dem Material aufgenommen werden müssen. Nun hat zum Beispiel der Stahl in einer Stütze nicht überall die gleiche Temperatur und somit auch nicht die dieselbe Tragfähigkeit. Insofern ist die Anordnung der Bewehrung entscheidend für das Ergebnis der Berechnung. Doch insbesondere hier bieten Softwarelösungen meistens viele Varianten der Bewehrungsanordnung, die genau betrachtet werden müssen, um wirtschaftliche Ergebnisse zu erzielen.
Drei Einstellungsmöglichkeiten sollten bei einer Heißbemessung von Stahlbetonstützen immer überprüft werden:
Betondeckung
Die Betondeckung ist die Schutzschicht für den Bewehrungsstahl. Je höher die Betondeckung ist, desto geringer ist die Temperatur im Stahl und somit gewinnt das Material an Tragfähigkeit. Die Erhöhung der Betondeckung verschiebt die Bewehrung also ins Innere der Stütze, wobei die Temperatur stark abnimmt. Das kann schon bei geringen Veränderungen große Auswirkungen haben, da der Anstieg der Temperatur am Stützenrand extrem steil ist (siehe Bild).

Bewehrungswahl

  1. Bewehrung über den Umfang verteilen
  2. zusätzliche Bewehrung manuell mittig zum Randbereich der Stütze einlegen
  3. Die Bewehrung mehr in der Mitte der Stütze konzentrieren

Durch die starke Reduzierung der Lasten kann das Knicken in beide Richtungen maßgebend werden, sodass die eingelegte Eckbewehrung oder die einseitige Bewehrung die Belastung nicht mehr aufnehmen können. Außerdem nimmt die Temperatur zur Mitte der Stütze hin ab und die Festigkeit des Betonstahls wird weniger reduziert. Somit werden Bewehrungswahlen, die für die kalte Bemessung hilfreich sind, für die Heißbemessung ungünstig. Auf der sicheren Seite für die Heißbemessung ist immer eine umfangverteilte Bewehrung mit möglichst mittig liegenden Eisen. (Bild)


Statisches System
Eine Stütze verändert unter Brandbeanspruchung zum Teil sein statisches System. Zum einen lässt die Einspannung bei Pendelstützen eine Reduzierung der Knicklänge um 50% zu. Zum anderen ist zu untersuchen, ob bei Kragstützen eine teilweise Einspannung am Stützenkopf möglich ist, beispielsweise durch Stahlbetonbinder bei großen Hallensystemen. Diese Erleichterungen können bei der Bemessung auf jeden Fall berücksichtigt werden, müssen aber meistens manuell bei der Software ausgewählt bzw. angegeben werden. (Bild mbaec auswahl, Bild Einspannung)

Quellenangaben

  1. [DIN EN 1991-1-2:2010-12]
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 [Betonkalender 2018: Bautenschutz Brandschutz, Teil 2]
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 [Dietmar Hosser, Jochen Zehfuß (Hrsg.): Brandschutz in Europa - Bemessung nach Eurocodes - 3., Überarbeitete und erweiterte Auflage 2017]
  4. 4,0 4,1 [Dr.Ing. Josef Kretz, mb-news 1/2016; Heißbemessung von Stahlbetonstützen nach EC 2 Teil 1-2 und Nationalem Anhang (NA), 2016]
  5. 5,0 5,1 [Workshop EC3 Rechenbeispiele, Brandschutznachweise; Prof.Dr.-Ing. Martin Mensinger; Dipl.-Ing.(FH) Martin Stadler, 2008]
  6. 6,0 6,1 [1]
  7. [2]
  8. Referenzfehler: Es ist ein ungültiger <ref>-Tag vorhanden: Für die Referenz namens MüllerZirnbauer wurde kein Text angegeben.
  9. 9,0 9,1 9,2 9,3 Dr.Ing. Josef Kretz, mb-news 1/2016; Heißbemessung von Stahlbetonstützen nach EC 2 Teil 1-2 und Nationalem Anhang (NA), 2016 Referenzfehler: Ungültiges <ref>-Tag. Der Name „mbnews“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert.
  10. 10,0 10,1 10,2 10,3 DIN EN 1992-1-2: 2010-12, mit DIN EN 1992-1-2/NA: 2015-09
  11. 11,0 11,1 Dietmar Hosser, Jochen Zehfuß: Brandschutz in Europa - Bemessung nach Eurocodes; 2., vollständig überarbeitete und erweiterte Auflage 2017, Beuth Verlag GmbH
  12. DIN EN 1992-1-2/NA: 2010-12
  13. 13,0 13,1 Dietmar Hosser: Brandschutz in Europa - Bemessung nach Eurocodes; 2., vollständig überarbeitete und erweiterte Auflage 2012, Beuth Verlag GmbH
  14. 14,0 14,1 DIN EN 1991-1-2/NA:2015-09
  15. 15,0 15,1 Hosser, D., Richter, E., Zehfuß, J.: Erarbeitung von Nationalen Anwendungsrichtlinien für rechnerische Nachweise nach den Brandschutzteilen der Eurocodes 2 – 5. Abschlussbericht im Auftrag des Bundesministeriums für Raumordnung, Bauwesen und Städtebau (Az. RS III 4 – 67 41 – 97.120). Institut für Baustoffe, Massivbau und Brandschutz (iBMB), Technische Universität Braunschweig,Braunschweig 1999.
  16. Zehfuß, J.: Anforderungen an Rechenprogramme für allgemeine Rechenverfahren nach Eurocode. vfdb-Jahresfachtagung 2012, 21. bis 23.05.2012 in Köln, Tagungsband, 2012.
  17. Zehfuß, J., Richter, E.: Bewertungskriterien für rechnerische Brandschutznachweise nach den Eurocodes. Braunschweiger Brandschutztage ´99, 8. Fachseminar Brandschutz – Forschung und Praxis. 04. und 05. Oktober 1999 in Braunschweig. Institut für Baustoffe, Massivbau und Brandschutz (iBMB), Technische Universität Braunschweig, Heft 145, Braunschweig 1999.
  18. Dipl.-Ing- J. Zirnbauer, Dr.-Ing. R. Müller; Grundlagen der Heißbemessung von Stahlbetonbauteilen auf Basis des EC2; München 2007