Biegebemessung (einachsige Biegung): Unterschied zwischen den Versionen

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen
Zeile 134: Zeile 134:
 
<math>F_{sd}= \sigma_{sd}\cdot A_{s}~</math> unter der Annahme <math>\sigma_{sd}=f_{yd}~</math>
 
<math>F_{sd}= \sigma_{sd}\cdot A_{s}~</math> unter der Annahme <math>\sigma_{sd}=f_{yd}~</math>
  
&rArr; <u>'''As= 1/fyd * (MEds/z +NEd)'''</u> <math>A_{s}=\cfrac
+
&rArr; <u>'''As= 1/fyd * (MEds/z +NEd)'''</u>  
  
  

Version vom 27. April 2016, 12:59 Uhr

Grundlagen

Die Biegebemessung im Grenzzustand der Tragfähigkeit hat die Aufgaben,

nachzuweisen dass der vorab gewählte Betonquerschnitt in der Lage ist die vorhandenen Druckspannungen aufzunehmen und

die erforderliche Stahlquerschnittsfläche der Biegezugbewehrung an den Stellen der maximalen Biegebeanspruchung zu bestimmen.


Um eine Bemessung des Querschnitts im Grenzzustand der Tragfähigkeit zu ermöglichen, werden im Voraus folgende grundlegende Annahmen getroffen:[1]

  • Querschnitte, die vor der Verformung eben waren, bleiben eben (Bernoulli Hypothese)


  • Es liegt vollkommener Verbund vor, das heißt die Dehnungen des Betons entsprechen den Dehnungen des Betonstahls


  • Die Zugfestigkeit des Betons darf im Grenzzustand der Tragfähigkeit nicht berücksichtigt werden, das heißt sämtliche Zugkräfte müssen durch den Betonstahl aufgenommen werden


  • Für die Spannungs-Stauchungs- Verknüpfung im Beton gilt im Regelfall folgendes vereinfachtes Diagramm:
Spannung Beton.PNG

Gilt für Betone der Festigkeitsklasse bis C50/60 bzw. Leichtbetone bis C50/55


  • Die Spannungs-Dehnungs/Stauchungs-Verhältnisse im Stahlbeton werden für die Bemessung wie folgt beschrieben:

Spannung Stahl.PNG

Linie I: Zur Vereinfachung wird ein horizontal weiterlaufender Ast angenommen fyk=500N/mm²

Linie II: Ansteigender Ast zugelassen zur Querschnittsbemessung, wenn die Dehnung maximal εud=25 ‰ beträgt


  • Es gelten folgende möglichen Dehnungsverteilungen im Stahlbetonquerschnitt:[2]

Dehnungsverteilung Stahlbeton.PNG

Für Betone bis zur Festigkeitsklasse C50/60 gelten die Grenzstauchungen:

εc2=-3,5‰ bei Biegebeanspruchung und

εc2c1=-2,2‰ bei zentrischem Druck

Der Betonstahl versagt bei einer Grenzdehnung von εs1s2=25‰


Nachweisführung und Bewehrungsermittlung mit Bemessungshilfen

Eine iterative Handrechnung ist in der Praxis sehr umständlich und daher nicht üblich.

Der Nachweis der Grenztragfähigkeit und die Ermittlung der Längsbewehrung erfolgen im Allgemeinen mit Bemessungstafeln,

wie sie beispielsweise in [Schneider Bautabellen für Ingenieure 20.Auflage Abs.5.6 Tafeln 1-9] zu finden sind.[3]


Um mit den Bemessungshilfen arbeiten zu können, müssen die Bauteilabmessungen und Materialparameter bekannt sein.

Die statische Nutzhöhe d kann für den Fall, dass sie vor der Bewehrungsermittlung noch unbekannt ist über eine Vorbemessung

abgeschätzt werden und gegebenenfalls nach der Bewehrungswahl noch einmal korrigiert werden und für eine erneute Bemessung verwendet werden.


Mit Hilfe der Bemessungstafeln bzw. Diagrammen kann nun bei bekanntem maximalen einwirkenden Moment die erforderliche Bewehrung,

oder bei bekanntem Bewehrungsquerschnitt das maximal aufnehmbare Moment ermittelt werden.


Um die Verwendung der Hilfsmittel Querschnittsunabhängig und damit allgemein anwendbar zu machen, werden verschiedene dimensionslose bezogene Parameter entwickelt:[2][4]

Beiwerte.PNG

Einwirkende Schnittgrößen müssen auf die mit Hilfe von zs1 auf den Schwerpunkt der Bewehrung übertragen werden:

(entfällt im Modul S340.de, da keine Normalkraft definierbar)


Das bezogene Moment in der Höhe der gesuchten Bewehrung ergibt sich zu:


Die Betondruckkraft Fcd ergibt sich, indem die Fläche der Druckspannungen über die Druckzonenhöhe integriert wird:


Mit dem Völligkeitsbeiwert , der das Verhältnis der integrierten Fläche zur einhüllenden Rechteckfläche beschreibt, ergbibt sich:


Es wird eine bezogene Druckzonenhöhe eingeführt: bzw.

oder auch:


Mit dem Bauteilwiderstand und der Aussage: und dem bezogenen Moment:


Es wird ein bezogener innerer Hebelarm eingeführt aus:

und

Abstand von zur oberen Bauteilkante


Aus allen jetzt bekannten Beziehungen ergibt sich:



Die Beiwerte , und sind von dem Querschnitt des Bauteils unabhängig

und es kann bei gegebenen Dehnungsverhältnis das aufnehmbare Moment mit Hilfe der Tabellen bestimmt werden.


Die erforderliche Bewehrung lässt sich wie folgt ermitteln:

mit


Mit bekanntem ergibt sich:

unter der Annahme

As= 1/fyd * (MEds/z +NEd)


Allgemeines Bemessungsdiagramm

Das allgemeine Bemessungsdiagramm ist für alle Normalbetone bis zur Festigkeitsklasse C50/60 anwendbar.

Als Eingangswert dient entweder das bezogene Moment Müheds=Meds/b*d²*fcd.

Es können alle dazugehörigen Parameter und die Dehnungsverteilung abgelesen werden und die erforderliche Bewehrung mit:

As= 1/fyd * (MEds/z +NEd) ermittelt werden.

Oder, bei bekannter Bewehrungsquerschnittsfläche, der Druckzonenparameter vcd=fyd*As/fcd*b*d.

Damit kann das bezogene Moment abgelesen und die Tragfähigkeit durch umstellen der Formel zu MEds=müh eds*fcd*b*d² ermittelt werden.


Hinweis: Bei Verwendung des Diagramms sind immer geringe Ableseungenauigkeiten zu erwarten


Bemessungstafeln mit dimensionslosen Beiwerten (Omega-Verfahren)

Die Bemessungstafeln zeigen das allgemeine Bemessungsdiagramm in tabellierter Form, erweitert um den Dimensionslosen Beiwert

ω= As*σ sd-Ned/b*d*fcd

Mit bekanntem Moment dient wieder das bezogene Moment µeds als Einganswert ω kann abgelesen werden

(Entweder ungünstigerer Wert oder interpolieren) und über die Formel As=1/σ sd*(omega*b*d*fcd+Ned) der erforderliche Bewehrungsquerschnitt ermittelt werden.

Bei bekanntem Querschnitt kann durch umstellen der Formel zu ω=As*fyd/fcd*b*d, ω als Eingangswert verwendet werden.

µeds kann abgelesen werden und das aufnehmbare Moment ermittelt werden.

Auszug aus dimensionsloser Tabelle:[1]

Dimensionslos.PNG


Bemessungstafeln mit dimensionsgebundenen Beiwerten (Kd –verfahren)

Für das kd verfahren werden dimensionsgebundene, von der Festigkeitsklasse abhängige kd-Beiwerte ermittelt. [2]

Kd=d[cm]/√ meds[kNm]/b[m]

Ks wert wird abgelesen und Stahlquerschnitt ermittelt

As{cm²]=ks*Meds[kNm]/d[cm] + Ned[kN]/43,5

Bei bekanntem Querschnitt wird ks durch entsprechendes umstellen der Formel ermittelt -> kd abgelesen und das aufnehmbare Moment ermittelt.

Auszug aus dimensionsgebundener Tabelle:[1]

Dimensionsgebunden.PNG


Vorgehensweise Plattenbalken

Bei der Biegebemessung von Plattenbalken ist zunächst die effektive Plattenbreite zu ermitteln.

Befindet sich die Platte in der Druckzone, ist das bezogene Moment mit der effektiven Plattenbreite zu ermitteln[4]

Mit dem bezogenen Moment als Eingangswert wird aus der Tafel für Rechteckquerschnitte ξ abgelesen.

Bei ξ < hf/d liegt die Dehnungsnulllinie in der Platte und die Bemessung kann wie bei einem Rechteckquerschnitt erfolgen.

Bei ξ > hf/d liegt die Dehnungsnulllinie im Steg und es muss mit gesonderten Tafeln für Plattenbalken gearbeitet werden.

Im Bereich negativer Momente muss ebenfalls die Lage der Dehnungsnulllinie geprüft werden,

sollte sie im Steg liegen ist ebenso wie bei einem Rechteckquerschnitt vorzugehen mit der Breite b =Stegbreite.

Um die richtige Tafel für Plattenbalkenquerschnitte zu wählen müssen die Verhältnisse hf/d und bf/bw ermittelt werden.

Anschließend kann aus der passenden Tafel ω abgelesen werden und die Querschnittsfläche der Bewehrung über As=1/fyd*(ω*bf*d*fcd+Ned) errechnet werden.

Quellen

  1. 1,0 1,1 1,2 Schneider Bautabellen für Ingenieure, 20. Auflage, Köln: Werner Verlag, 2012
  2. 2,0 2,1 2,2 Avak,R., Conchon,R., Aldejohann,M., Stahlbetonbau in Beispielen Teil 1, 7. Auflage, Nürnberg/Düsseldorf: Bundesanzeiger Verlag, 2016
  3. Goris,A., Stahlbetonbau-Praxis nach Eurocode 2, Band 1, 5. Auflage, Siegen: Beuth, 2014
  4. 4,0 4,1 Bolle,G., Skript Stahlbetonbau 1, Themenkomplex 5- Bemessung bei überwiegender Biegung im Grenzzustand der Tragfähigkeit (Rechteckquerschnitt), Wismar, 2014