Verankerung am Kragarmende (Bsp.): Unterschied zwischen den Versionen

Aus Baustatik-Wiki
Zur Navigation springen Zur Suche springen
K
K
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 41: Zeile 41:
 
<math>p_{Ed} = 1,35 \cdot 40 kN/m + 1,5 \cdot 25 kN/m = 91,5 kN/m</math>
 
<math>p_{Ed} = 1,35 \cdot 40 kN/m + 1,5 \cdot 25 kN/m = 91,5 kN/m</math>
  
<math>D_{min} = 4 \cdot \O_s = 4 \cdot 1,6 cm = 6,4 cm</math>
+
<math>D_{min} = 4 \cdot \O_s = 4 \cdot 1,6 cm = 6,4 cm</math> (vgl. [https://baustatik-wiki.fiw.hs-wismar.de/mediawiki/index.php/Mindestbiegerollendurchmesser Mindestbiegerollendurchmesser])
  
 
<math>x_0 = c_{nom} + \O_s + D_{min}/2 = 5,0 cm + 1,6 cm + 6,4 cm / 2 = 9,8 cm</math>
 
<math>x_0 = c_{nom} + \O_s + D_{min}/2 = 5,0 cm + 1,6 cm + 6,4 cm / 2 = 9,8 cm</math>
Zeile 106: Zeile 106:
  
  
[[Kategorie:Grundlagen/Begriffe-Stahlbetonbau]]
+
[[Kategorie:Beispiele-Stahlbetonbau]]

Aktuelle Version vom 13. Mai 2024, 20:53 Uhr

In diesem Berechnungsbeispiel ist die Verankerungslänge der Zugbewehrung am Ende eines Kragarms nachzuweisen. Allgemeine Regeln zur Verankerungslänge und spezielle Hinweise zur Verankerung am Kragarmende werden auf einer gesonderten Seite dargestellt.

Aufgabenstellung

Baustatik-Wiki

Baustatik-Wiki

Für den dargestellten Träger mit Kragarm ist die Verankerungslänge am Kragarmende zu bestimmen.

Gegeben sind folgende Daten:

  • Beton: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C30/37}
  • Betondeckung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_{nom} = 50 mm}
  • Nutzhöhe obere Bewehrungslage:
  • Gewählte Bewehrung oben am Kragarmende: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4 \O 16}
  • Druckstrebenneigungswinkel: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\theta} = 18,4} ° → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle cot {\theta} = 3,00}

Lösung

Verbundfestigkeit

Bewehrung oben → mäßiger Verbund

→ C30/37 → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{bd} = 0,7 \cdot 3,0 N/mm^2 = 2,1 N/mm^2 = 0,21 kN/cm^2}

Versatzmaß

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z = 0,9 \cdot d = 0,9 \cdot 64 cm = 57,6 cm}

Bei seitlich ausgelagerter Bewehrung ist das Versatzmaß um den Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} der ausgelagerten Stäbe vom Stegrand zu erhöhen. Dieser Wert beträgt hier Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x = 10 cm} .

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_L = z \cdot (cot {\theta} + cot {\alpha})/2 + x}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_L = 57,6 cm \cdot (3,0 + 0)/2 + 10 cm = 96,4 cm}

Randzugkraft

Die Randzugkraft wird hier über das Verschieben der Zugkraftlinie um das Versatzmaß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_L} ermittelt. Dazu wird das Moment an der Stelle des rechnerischen Endes der Bewehrung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0+a_l} berechnet.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_{Ed} = 1,35 \cdot 40 kN/m + 1,5 \cdot 25 kN/m = 91,5 kN/m}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D_{min} = 4 \cdot \O_s = 4 \cdot 1,6 cm = 6,4 cm} (vgl. Mindestbiegerollendurchmesser)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0 = c_{nom} + \O_s + D_{min}/2 = 5,0 cm + 1,6 cm + 6,4 cm / 2 = 9,8 cm}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Ed,x0} = p_{Ed} \cdot \frac{(x_0 + a_L)^2}{2} = 91,5 kN/m \cdot \frac{(0,098 m + 0,964 m)^2}{2} = 51,60 kNm}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_{sd} = \frac{M_{Ed,x0}}{z} = \frac{51,60 kNm}{0,576 m} = 89,58 kN}

Erforderliche Bewehrung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,erf} = \frac{F_{sd}}{f_{yd}} = \frac{89,58 kN}{43,5 kN/cm^2} = 2,06 cm^2}

Stahlspannung

Vorhanden: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4 \O 16}Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,vorh} = 8,04 cm^2}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\sigma}_{sd} = f_{yd} \cdot \frac{A_{s,erf}}{A_{s,vorh}} = 43,5 kN/cm^2 \cdot \frac{2,06 cm^2}{8,04 cm^2} = 11,14 kN/cm^2}

Grundwert der Verankerungslänge

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,rqd} = \frac{\O_s}{4} \cdot \frac{{\sigma}_{sd}}{f_{bd}} = \frac{1,6 cm}{4} \cdot \frac{11,14 kN/cm^2}{0,21 kN/cm^2} = 21,22 cm}

Bemessungswert der Verankerungslänge

Formgebung: Gerades Stabende → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\alpha}_1 = 1,0}

Querbewehrung: Vernachlässigbar → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\alpha}_3 = 1,0}

Angeschweißte Querstäbe: Keine → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\alpha}_4 = 1,0}

Querdruck: Nicht vorhanden → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\alpha}_5 = 1,0}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{bd} = 1,0 \cdot 1,0 \cdot 1,0 \cdot 1,0 \cdot 21,22 cm = 21,22 cm}

Mindestverankerungslänge

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,min} = max\left\{ {\begin{matrix} 0,3 \cdot {\alpha}_1 \cdot {\alpha}_4 \cdot {\alpha}_5 \cdot \left( \frac{\O_s}{4} \cdot \frac{f_{yd}}{f_{bd}} \right) \\ 10 \cdot {\alpha}_5 \cdot \O_s \end{matrix}} \right\} }

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,min} = max\left\{ {\begin{matrix} 0,3 \cdot 1,0 \cdot 1,0 \cdot 1,0 \cdot \left( \frac{1,6 cm}{4} \cdot \frac{43,5 kN/cm^2}{0,21 kN/cm^2} \right) \\ 10 \cdot 1,0 \cdot 1,6 cm \end{matrix}} \right\} }

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,min} = max\left\{ {\begin{matrix} 24,86 cm \\ 16 cm \end{matrix}} \right\} }

Die Mindestbewehrung ist maßgebend.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{\underline{l_{b,min} = 24,86 cm}}}

Nachweis der Verankerungslänge

Als Verankerungslänge soll hier gewählt werden: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,vorh} = 25 cm} .

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{\underline{l_{bd} = 24,86 cm \leq 25,00 cm = l_{b,vorh}}}}


Einordnung in die Gesamtbemessung der Verankerungslänge

Dieses Beispiel berechnet die Verankerungslänge an einem Bereich des Systems. Zur umfassenden Bemessung muss die Verankerungslänge auch an anderen Stellen ermittelt werden, hierzu werden am Berechnungsbeispiel auch die Verankerungslänge am Endauflager, am Zwischenauflager und außerhalb von Auflagern bestimmt.

Seiteninfo
Quality-flag-orange.gif
Status: Seite fertig, ungeprüft