Biegebemessung mit dem omega-Verfahren (Bsp.): Unterschied zwischen den Versionen
EWill (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{|style="border-style: solid; border-width: 2px" |'''Info''' Um einen neuen Beitrag zu erstellen, musst du den Titel des Beitrages über das Suchfeld von Baust…“) |
EWill (Diskussion | Beiträge) |
||
| Zeile 1: | Zeile 1: | ||
| − | { | + | Auf dieser Seite wird die Anwendung des <math>\omega</math>-Verfahrens an ausgewählten Beispielen dargestellt. Die theoretischen Grundlagen der [https://baustatik-wiki.fiw.hs-wismar.de/mediawiki/index.php/Biegebemessung_(einachsige_Biegung) Biegebemessung] werden auf einer gesonderten Seite dargestellt. |
| − | + | =Rechteckquerschnitte ohne Druckbewehrung= | |
| − | + | ==Aufgabenstellung== | |
| − | + | Ein Balken mit Rechteckquerschnitt (b=35cm; h=75cm) wird durch ein Moment <math>M_{gk} = 80,0kNm</math> sowie eine Normalkraft <math>N_{gk}=30kN</math> aus ständigen Lasten und ein Moment <math>M_{qk} = 180,0kNm</math> sowie eine Normalkraft <math>N_{qk}=50kN</math> aus veränderlichen Lasten beansprucht. Der Beton hat eine Festigkeitsklasse C20/25. Auf die Vorbemessung wird im Rahmen dieses Beispiels verzichtet, die [https://baustatik-wiki.fiw.hs-wismar.de/mediawiki/index.php/Statische_Nutzh%C3%B6he_(Bsp.) statische Nutzhöhe] beträgt 71cm. | |
| − | |} | + | |
| + | Gesucht ist die erforderliche Längsbewehrung. | ||
| + | ==Beanspruchungen und Festigkeiten== | ||
| + | <math>M_{Ed}=\gamma_g\cdot M_{gk}+\gamma_q\cdot M_{qk}</math> | ||
| + | |||
| + | <math>M_{Ed}=1,35\cdot80+1,5\cdot 180=378kNm=37800kNcm</math> | ||
| + | |||
| + | <math>N_{Ed}=\gamma_g\cdot N_{gk}+\gamma_q\cdot N_{qk}</math> | ||
| + | |||
| + | <math>N_{Ed}=1,35\cdot30+1,5\cdot 50=115,5kN</math><br> | ||
| + | <br> | ||
| + | Es handelt sich um einen [https://baustatik-wiki.fiw.hs-wismar.de/mediawiki/index.php/%C3%9Cberwiegend_biegebeanspruchter_Querschnitt überwiegend biegebanspruchten] Querschnitt, auf den Nachweis soll im Rahmen dieses Beispiels verzichtet werden. | ||
| + | <br> | ||
| + | <math>f_{cd}=\alpha_{cc}\cdot\frac{f_{ck}}{\gamma_c}=0,85\cdot\frac{20}{1,5}=11,33\frac{N}{mm^2}=1,13\frac{kN}{cm^2}</math> | ||
| + | |||
| + | <math>f_{yd}=\frac{f_{yk}}{\gamma_s}=\frac{500}{1,15}=435\frac{N}{mm^2}=43,5\frac{kN}{cm^2}</math> | ||
| + | ==Querschnittswerte== | ||
| + | <math>d=71cm</math> | ||
| + | |||
| + | <math>z_{s1}=33,5cm</math> | ||
| + | ==Bemessung== | ||
| + | <math> M_{Eds}=M_{Ed}-N_{Ed}\cdot z_{s1} </math> | ||
| + | |||
| + | <math> M_{Eds}=37800-115,5\cdot33,5 </math> | ||
| + | |||
| + | <math> M_{Eds}=33930,75kNcm </math> | ||
| + | |||
| + | <math>\mu_{Eds}=\frac{M_{Eds}}{b\cdot d^2\cdot f_{cd}}</math> | ||
| + | |||
| + | <math>\mu_{Eds}=\frac{33930,75}{35\cdot 71^2\cdot 1,13}</math> | ||
| + | |||
| + | <math>\mu_{Eds}=0,17<0,296</math> | ||
| + | |||
| + | Da <math>\mu_{Eds}<0,296</math> ist keine Druckbewehrung erforderlich. | ||
| + | Der Wert für <math>\omega</math> wird aus der Tafel für Rechteckquerschnitte ohne Druckbewehrung abgelesen. Die <math>\omega</math> lassen sich z.B. in Schneider Bautabellen<ref Name = "Q1">Albert,A., Bautabellen fü Ingenieure, Auflage 26, Bundesanzeigerverlag, 2024</ref> finden. | ||
| + | |||
| + | <math>\omega=0,1882</math> | ||
| + | |||
| + | ===Ermittlung der Bewehrungsquerschnittsfläche mit der vereinfachten Stahlkennlinie=== | ||
| + | <math>A_{s1}=\frac{1}{\sigma_{sd}}\cdot\left(\omega\cdot b\cdot d\cdot f_{cd}+N_{Ed}\right)</math> | ||
| + | |||
| + | <math>A_{s1}=\frac{1}{43,5}\cdot\left(0,1882\cdot 35\cdot 71\cdot 1,13+115,5\right)</math> | ||
| + | |||
| + | <math>\underline{\underline{A_{s1}=14,8cm^2}}</math> | ||
| + | |||
| + | ===Ermittlung der Bewehrungsquerschnittsfläche mit der genaueren Stahlkennlinie=== | ||
| + | Der genauere Wert für <math>\sigma_{sd}</math> kann ebenfalls in Abhängigkeit von <math>\mu_{Eds}</math>abgelesen werden. | ||
| + | |||
| + | <math>\sigma_{sd}=44,4\frac{kN}{cm^2}</math> | ||
| + | |||
| + | <math>A_{s1}=\frac{1}{\sigma_{sd}}\cdot\left(\omega\cdot b\cdot d\cdot f_{cd}+N_{Ed}\right)</math> | ||
| + | |||
| + | <math>A_{s1}=\frac{1}{44,4}\cdot\left(0,1882\cdot 35\cdot 71\cdot 1,13+115,5\right)</math> | ||
| + | |||
| + | <math>\underline{\underline{A_{s1}=14,5cm^2}}</math> | ||
| + | =Rechteckquerschnitte mit Druckbewehrung= | ||
| + | |||
| + | =Plattenbalkenquerschnitte= | ||
| + | |||
| + | {{Seiteninfo | ||
| + | |Quality-flag = [[File:quality-flag-white.gif|right|70px]] | ||
| + | |Status = in Bearbeitung|}} | ||
Version vom 16. April 2024, 22:57 Uhr
Auf dieser Seite wird die Anwendung des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} -Verfahrens an ausgewählten Beispielen dargestellt. Die theoretischen Grundlagen der Biegebemessung werden auf einer gesonderten Seite dargestellt.
Rechteckquerschnitte ohne Druckbewehrung
Aufgabenstellung
Ein Balken mit Rechteckquerschnitt (b=35cm; h=75cm) wird durch ein Moment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{gk} = 80,0kNm} sowie eine Normalkraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{gk}=30kN} aus ständigen Lasten und ein Moment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{qk} = 180,0kNm} sowie eine Normalkraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{qk}=50kN} aus veränderlichen Lasten beansprucht. Der Beton hat eine Festigkeitsklasse C20/25. Auf die Vorbemessung wird im Rahmen dieses Beispiels verzichtet, die statische Nutzhöhe beträgt 71cm.
Gesucht ist die erforderliche Längsbewehrung.
Beanspruchungen und Festigkeiten
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Ed}=\gamma_g\cdot M_{gk}+\gamma_q\cdot M_{qk}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Ed}=1,35\cdot80+1,5\cdot 180=378kNm=37800kNcm}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{Ed}=\gamma_g\cdot N_{gk}+\gamma_q\cdot N_{qk}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_{Ed}=1,35\cdot30+1,5\cdot 50=115,5kN}
Es handelt sich um einen überwiegend biegebanspruchten Querschnitt, auf den Nachweis soll im Rahmen dieses Beispiels verzichtet werden.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{cd}=\alpha_{cc}\cdot\frac{f_{ck}}{\gamma_c}=0,85\cdot\frac{20}{1,5}=11,33\frac{N}{mm^2}=1,13\frac{kN}{cm^2}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{yd}=\frac{f_{yk}}{\gamma_s}=\frac{500}{1,15}=435\frac{N}{mm^2}=43,5\frac{kN}{cm^2}}
Querschnittswerte
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d=71cm}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z_{s1}=33,5cm}
Bemessung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Eds}=M_{Ed}-N_{Ed}\cdot z_{s1} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Eds}=37800-115,5\cdot33,5 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{Eds}=33930,75kNcm }
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mu _{Eds}={\frac {M_{Eds}}{b\cdot d^{2}\cdot f_{cd}}}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_{Eds}=\frac{33930,75}{35\cdot 71^2\cdot 1,13}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_{Eds}=0,17<0,296}
Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_{Eds}<0,296} ist keine Druckbewehrung erforderlich. Der Wert für wird aus der Tafel für Rechteckquerschnitte ohne Druckbewehrung abgelesen. Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} lassen sich z.B. in Schneider Bautabellen[1] finden.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega=0,1882}
Ermittlung der Bewehrungsquerschnittsfläche mit der vereinfachten Stahlkennlinie
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s1}=\frac{1}{\sigma_{sd}}\cdot\left(\omega\cdot b\cdot d\cdot f_{cd}+N_{Ed}\right)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s1}=\frac{1}{43,5}\cdot\left(0,1882\cdot 35\cdot 71\cdot 1,13+115,5\right)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{\underline{A_{s1}=14,8cm^2}}}
Ermittlung der Bewehrungsquerschnittsfläche mit der genaueren Stahlkennlinie
Der genauere Wert für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{sd}} kann ebenfalls in Abhängigkeit von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_{Eds}} abgelesen werden.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{sd}=44,4\frac{kN}{cm^2}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s1}=\frac{1}{\sigma_{sd}}\cdot\left(\omega\cdot b\cdot d\cdot f_{cd}+N_{Ed}\right)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s1}=\frac{1}{44,4}\cdot\left(0,1882\cdot 35\cdot 71\cdot 1,13+115,5\right)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{\underline{A_{s1}=14,5cm^2}}}
Rechteckquerschnitte mit Druckbewehrung
Plattenbalkenquerschnitte
Seiteninfo
|
- ↑ Albert,A., Bautabellen fü Ingenieure, Auflage 26, Bundesanzeigerverlag, 2024