Heißbemessung Stahlbetonbau: Unterschied zwischen den Versionen
Zeile 161: | Zeile 161: | ||
Die Materialfestigkeiten und die E-Module von Beton und Stahl ändern sich unter hohen Temperaturen.<ref name="Grundlagen Heißbemessung" /> Schon bei einem geringen Spannungszuwachs nimmt die Dehnung unter hohen Temperaturen deutlich zu. Daraus lässt sich schließen, dass die Festigkeit von Stahl und Beton unter hohen Temperaturen stark abnimmt. | Die Materialfestigkeiten und die E-Module von Beton und Stahl ändern sich unter hohen Temperaturen.<ref name="Grundlagen Heißbemessung" /> Schon bei einem geringen Spannungszuwachs nimmt die Dehnung unter hohen Temperaturen deutlich zu. Daraus lässt sich schließen, dass die Festigkeit von Stahl und Beton unter hohen Temperaturen stark abnimmt. | ||
− | '''Beton''' | + | *'''Beton'''<br/> |
Bei Beton wird die Beziehung zwischen Spannung- und Dehnung mit den zwei Parametern f<sub>c,θ</sub> (Druckfestigkeit) und ε<sub>c1,θ</sub> (Stauchung) bestimmt.<ref name="EC2">[DIN EN 1992-1-2:2010-12]</ref> Dazu wird außerdem zwischen kalksteinhaltigen und quarzhaltigen Zuschlagstoffen unterschieden, da diese bei der Wärmeleitfähigkeit und Wärmedehnung eine entscheidende Rolle spielen.<ref name="Grundlagen Heißbemessung" /> | Bei Beton wird die Beziehung zwischen Spannung- und Dehnung mit den zwei Parametern f<sub>c,θ</sub> (Druckfestigkeit) und ε<sub>c1,θ</sub> (Stauchung) bestimmt.<ref name="EC2">[DIN EN 1992-1-2:2010-12]</ref> Dazu wird außerdem zwischen kalksteinhaltigen und quarzhaltigen Zuschlagstoffen unterschieden, da diese bei der Wärmeleitfähigkeit und Wärmedehnung eine entscheidende Rolle spielen.<ref name="Grundlagen Heißbemessung" /> | ||
Zeile 167: | Zeile 167: | ||
+ | Für Beton sind die Spannungs-Dehnungslinien unter ETK ermittelt worden. Wird stattdessen ein Naturbrandmodell verwendet, müssen diese entsprechend modifiziert werden.<ref name="EC2" /> | ||
+ | Im Eurocode 2-1-2 gibt es Reduktionsfaktoren zur Berücksichtigung der Abnahme der Betonfestigkeit unter erhöhten Temperaturen. So wird die Abnahme der charakteristischen Druckfestigkeit f<sub>ck</sub> durch den Beiwert k<sub>c</sub> berücksichtigt. Dieser wird im EC 2-1-2 unter 4.2.4.2 in einem Diagramm beschrieben. Der Einfluss der Zuschläge auf die Festigkeit wird hier noch einmal deutlich erkennbar.<ref name="EC2" /> | ||
+ | Durch die Zunahme der Verformungsfähigkeit (Abnahme des E-Moduls) von 2,5‰ Bei 20°C auf 10-20 ‰ bei 600°C, werden aus den Randbereichen Spannungen auf innere Bereiche mit höherer Festigkeit umgelagert. Dies hat eine Reduzierung der Druckfestigkeit zur Folge.<ref name="Grundlagen Heißbemessung" /> | ||
+ | Auch die Zugfestigkeit nimmt mit steigender Temperatur stark ab.<ref name="Grundlagen Heißbemessung" /> Um auf der sicheren Seite zu liegen, sollte Sie im Regelfall nicht angesetzt werden.<ref name="EC2" /> | ||
+ | *'''Betonstahl''' | ||
+ | Betonstahl wird im EC 2-1-2 in Kapitel 3.2 erläutert. Der Eurocode legt in den Tabellen 3.2a und 3.2b die Parameter für die Spannungsdehnungsbeziehung fest. Dabei wird zwischen warmgewalzten und kaltverformten Betonstahl unterschieden.<ref name="EC2" /> | ||
+ | Bei einer Temperatur von rund 500 °C erreichen die Festigkeitseigenschaften von Stahl kritische Werte. Im Eurocode ist diese als kritische Temperatur festgelegt.<ref name="Betonkalender" /> Um den Abfall der charakteristischen Festigkeit f<sub>yk</sub> zu berücksichtigen, wird im EC 2-1-2 unter 4.2.4.3 der Beiwert k<sub>s</sub> festgelegt, welcher von der Stahltemperatur abhängig ist.<ref name="EC2" /> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Version vom 5. Juli 2023, 13:59 Uhr
Die Heißbemessung im Stahlbetonbau bezeichnet den rechnerischen Nachweis von Bauteilen oder Tragwerken aus Stahlbeton, welche durch einen Brand beansprucht werden.[1] Die Bemessungsverfahren der Brandschutznachweise werden im Brandschutzteil des Eurocodes Teil 2, der DIN EN 1992-1-2, geregelt.[2]
Hinweis :
|
Materialeigenschaften - Bauteilwiderstände
Bei hohen Temperaturen ändern sich die Materialeigenschaften der Bauteile. Auf der Widerstandsseite müssen dabei die thermischen und die mechanischen Materialeigenschaften betrachtet werden.[3]
Thermische Eigenschaften
Zu den thermischen Eigenschaften gehören die spezifische Wärme, die Wärmeleitfähigkeit und die Rohdichte. Diese werden für die Berechnung der Temperaturveränderung innerhalb von Bauteilen aus Beton und Stahl, welche brandbeansprucht sind, benötigt. Hiermit kann die Temperatur in einem bestimmten Punkt des Bauteils bestimmt werden, was wiederum für einen Teil der Heißbemessung von Nöten ist. Außerdem muss die Dehnung infolge der Temperaturänderung des Materials, beachtet werden.[3]
- Wärmekapazität cp(θ) [J/(kg*K)]
- Bei Beton spielt der Feuchtegehalt eine entscheidende Rolle. Da Wasser mehr Energie zum Erwärmen benötigt als Beton, läuft die Erwärmung des Bauteils am Anfang langsamer ab, bis das Wasser verdampft ist.[5]
- Im Temperaturbereich von 100 – 200°C kommt es zur Verdampfung von Porenwasser. Die spezifische Wärme steigt aufgrund der dafür verbrauchten Wärmeenergie an. Die benötigte Energiemenge ist dabei von der relativen Betonfeuchte abhängig. Danach ist nur noch der Widerstand des Betons vorhanden.[3]
- Auch bei Stahl ändert sich die spezifische Wärmekapazität mit der Temperaturänderung. Im Vergleich mit der von Beton, ist diese jedoch viel geringer. Sie liegt im Durchschnitt bei ca. 0,6 KJ/(kg*K) und erreicht somit nur 50% des Wertes von trockenem Beton. Betonstahl nimmt die Wärme also wesentlich schneller auf.
- Aufgrund von Umkristallisationsvorgängen, welche Wärmeenergie in Bindungsenergie umwandeln, steigt die Wärmekapazität zwischen 600 und 800 °C stark an. Dieser Einfluss fällt allerdings eher gering aus.[4]
- thermische Leitfähigkeit λ [W/(m*K)]
- Die Kapazität eines Materials, Wärme zu transportieren, wird als ,,Wärmeleitfähigkeit" oder auch ,,thermische Leitfähigkeit" bezeichnet.[2] Sie beschreibt die Wärmemenge Q (in Joule), welche in einer bestimmten Zeit, aufgrund eines bestimmten Temperaturunterschiedes, durch einen Körper mit der Länge l und der Fläche A fließt.[4] Damit wird ausgesagt, wie schnell Wärme in das Innere von Bauteilen dringt und wie schnell dieses wieder abkühlt. Sie wird in [(J/s) / (m*K)], bzw. [W / (m*K)] angegeben. Je geringer diese ist, desto besser ist das Dämmvermögen. [6]
- Die Kapazität eines Materials, Wärme zu transportieren, wird als ,,Wärmeleitfähigkeit" oder auch ,,thermische Leitfähigkeit" bezeichnet.[2] Sie beschreibt die Wärmemenge Q (in Joule), welche in einer bestimmten Zeit, aufgrund eines bestimmten Temperaturunterschiedes, durch einen Körper mit der Länge l und der Fläche A fließt.[4] Damit wird ausgesagt, wie schnell Wärme in das Innere von Bauteilen dringt und wie schnell dieses wieder abkühlt. Sie wird in [(J/s) / (m*K)], bzw. [W / (m*K)] angegeben. Je geringer diese ist, desto besser ist das Dämmvermögen. [6]
- Bei Beton ist die thermische Leitfähigkeit stark von den Zuschlägen und dem Temperaturunterschied abhängig. Sie wird mit einem oberen und unteren Grenzwert angegeben. Dabei steht dir Kurve 1 für quarzhaltige Zuschläge und die Kurve 2 für kalksteinhaltige Zuschläge.[4] Im nationalen Anhang EC 2-1-2 [2-2] wird die Verwendung des oberen Grenzwertes vorgeschrieben.[3] Bei Beton nimmt die Wärmeleitfähigkeit mit steigender Temperatur ab. Baustoffe wie Bims oder Blähton können die Leitfähigkeit weiter verringern.[7]
- thermische Dehnung ε [Δl / l]
- Die Abmessungen eines Körpers nehmen bei steigender Temperatur zu. Diese Reaktion wird als Temperaturdehnung ε bezeichnet. Bei ε handelt es sich um eine grundsätzlich temperaturabhängige Größe.[2]
- Bei einer Temperaturerhöhung von Beton, kann es je nach Bestandteil des Betons zu einem teils sprunghaften Volumenanstieg kommen. Ein Beispiel dafür ist Quarz. Wenn es die Temperatur 573°C erreicht, kommt es zum sogenannten Quarzsprung. Dabei nimmt das Quarzvolumen sprunghaft um 0,8 % zu.[2] Der dem Steigungswinkel der Kurve entsprechende Koeffizient αT liegt je nach Zuschlag zwischen 0,6 und 1,0 * 10-5 /K.[4] Die Temperaturdehnung für Beton wird mit εc(θ) bezeichnet.[2]
- Bei Normaltemperatur sind die Unterschiede zwischen Beton und Stahl eher gering. Diese werden mit steigenden Temperaturen jedoch immer größer. Die Materialien dehnen sich unterschiedlich aus, wodurch große innere Spannungen entstehen, welche eine Rissbildung zur Folge haben können.[4]
- Rohdichte ρ [kg/m3]
- Das Porensystem im Beton bietet Platz für Flüssigkeiten wie zum Beispiel Wasser. Die Rohdichte von Beton ist somit vom Wassergehalt des Porensystems abhängig. Allerdings fällt die Veränderung der Dichte bei der Erwärmung von Beton nur relativ gering aus.[2]
Mechanische Eigenschaften
Die temperaturabhängigen Veränderungen der mechanischen Baustoffwerte spiegeln sich in den Spannungs- Dehnungsbeziehungen wieder. Diese sind Grundlage der brandschutztechnischen Bauteil- und Tragwerksanalyse. Das Festigkeits- und Verformungsverhalten von Baustoffen bei erhöhten Temperaturen wird im Eurocode 2-1-2, Abschnitt 3 vereinfacht, aber für den Brandschutznachweis ausreichend dargestellt. Anhand der Darstellungsweise des Baustoffverhaltens, wird an die Bemessungsgrundlagen bei Normaltemperatur angeknüpft.[2]
Die charakteristischen Festigkeiten bei Normaltemperatur, fck für Beton und fyk für Stahl, sind dabei Eingangswerte für die Spannungs-Dehnungsbeziehungen unter Temperatureinfluss.[3] Die Materialfestigkeiten und die E-Module von Beton und Stahl ändern sich unter hohen Temperaturen.[4] Schon bei einem geringen Spannungszuwachs nimmt die Dehnung unter hohen Temperaturen deutlich zu. Daraus lässt sich schließen, dass die Festigkeit von Stahl und Beton unter hohen Temperaturen stark abnimmt.
- Beton
Bei Beton wird die Beziehung zwischen Spannung- und Dehnung mit den zwei Parametern fc,θ (Druckfestigkeit) und εc1,θ (Stauchung) bestimmt.[9] Dazu wird außerdem zwischen kalksteinhaltigen und quarzhaltigen Zuschlagstoffen unterschieden, da diese bei der Wärmeleitfähigkeit und Wärmedehnung eine entscheidende Rolle spielen.[4]
Im Eurocode 2-1-2 werden die Hauptparameter dafür in der Tabelle 3.1 angegeben. Vergleicht man die Werte der kalksteinhaltigen und quarzhaltigen Zuschläge fällt auf, dass die Werte für quarzhaltige Zuschläge geringer ausfallen. Das Diagramm ist daher für die quarzhaltigen Zuschläge aufgestellt.[9]
Für Beton sind die Spannungs-Dehnungslinien unter ETK ermittelt worden. Wird stattdessen ein Naturbrandmodell verwendet, müssen diese entsprechend modifiziert werden.[9]
Im Eurocode 2-1-2 gibt es Reduktionsfaktoren zur Berücksichtigung der Abnahme der Betonfestigkeit unter erhöhten Temperaturen. So wird die Abnahme der charakteristischen Druckfestigkeit fck durch den Beiwert kc berücksichtigt. Dieser wird im EC 2-1-2 unter 4.2.4.2 in einem Diagramm beschrieben. Der Einfluss der Zuschläge auf die Festigkeit wird hier noch einmal deutlich erkennbar.[9]
Durch die Zunahme der Verformungsfähigkeit (Abnahme des E-Moduls) von 2,5‰ Bei 20°C auf 10-20 ‰ bei 600°C, werden aus den Randbereichen Spannungen auf innere Bereiche mit höherer Festigkeit umgelagert. Dies hat eine Reduzierung der Druckfestigkeit zur Folge.[4] Auch die Zugfestigkeit nimmt mit steigender Temperatur stark ab.[4] Um auf der sicheren Seite zu liegen, sollte Sie im Regelfall nicht angesetzt werden.[9]
- Betonstahl
Betonstahl wird im EC 2-1-2 in Kapitel 3.2 erläutert. Der Eurocode legt in den Tabellen 3.2a und 3.2b die Parameter für die Spannungsdehnungsbeziehung fest. Dabei wird zwischen warmgewalzten und kaltverformten Betonstahl unterschieden.[9]
Bei einer Temperatur von rund 500 °C erreichen die Festigkeitseigenschaften von Stahl kritische Werte. Im Eurocode ist diese als kritische Temperatur festgelegt.[2] Um den Abfall der charakteristischen Festigkeit fyk zu berücksichtigen, wird im EC 2-1-2 unter 4.2.4.3 der Beiwert ks festgelegt, welcher von der Stahltemperatur abhängig ist.[9]
Materialeigenschafen aus EC2-1-2
Eine tabellarische Übersicht über die Materialeigenschaften aus dem EC2-1-2 Abschnitt 3 ist hier zu finden.
Detaillierte Informationen zu den Materialkennwerten aus dem EC sind hier zu finden.
Detaillierte Informationen zu den Abminderungsbeiwerten für Beton und Betonstahl aus dem EC sind hier zu finden.
Bemessungsverfahren im Stahlbetonbau nach EC 2-1-2
Im EC2 werden drei Nachweisverfahren angegeben, die sich in einzelne Verfahren unterteilen lassen. Grundlage der Nachweise sind die mechanischen und thermischen Eigenschaften sowie die Einheitstemperaturkurve. Die Ermittlung der Lasten erfolgt nach den bekannten Regeln.
Stufe 1: Tabellenverfahren
Beim Bemessungsverfahren mithilfe tabellarischer Daten werden in der Regel Querschnittsabmessungen des zu untersuchenden Bauteils verglichen. Die tabellarischen Daten wurden aus den sogenannten Normbrandversuchen ermittelt. Die im EC2-1-2, Abschnitt 5 enthaltenen Tabellen stellen die Mindestwerte der Querschnittsabmessungen und Achsabstände der Bewehrung in Abhängigkeit von der Feuerwiderstandsdauer dar.
Die Daten sind bis zu einer Widerstandsdauer von 240 Minuten tabelliert und liegen stehts auf der sicheren Seite.
Hinweis :
|
Der Eurocode 2-1-2 enthält Bemessungstabellen für:
- Stützen mit Rechteck- oder Kreisquerschnitten bei ein- und mehrseitiger Brandbeanspruchung: Methode A, Methode B
- tragende und nichttragende Wände.
- Balken mit Rechteck- und I-Querschnitt bei drei- oder vierseitiger Brandbeanspruchung.
- ein- oder zweiachsig gespannte Platten, Durchlaufplatten, Flachdecken und Rippendecken.
Stufe 2: vereinfachte Verfahren
Es ist bekannt, dass sich bei Brandbeanspruchung die Materialeigenschaften, bsw. die Tragfähigkeit, in Abhängigkeit der Temperaturen verringern. Die in EC 2-1-2 enthaltenen vereinfachten Rechenverfahren beschreiben die Verringerung der Tragfähigkeit von Bauteilen unter Brandbeanspruchung annähernd durch eine temperaturabhängige Verkleinerung des Querschnitts und eine temperaturbedingte Abminderung der Materialeigenschaften beim Brand.
Eine Verringerung des Betonquerschnitts berücksichtigt, dass die äußeren Betonoberflächen, die dem Brand direkt ausgesetzten sind, aufgezehrt werden und für die Tragfähigkeit nicht mehr angesetzt werden können. Um den Tragfähigkeitsnachweis, analog dem Nachweis für Normaltemperatur nach DIN EN 1992-1-1, zu führen, muss für den gedanklich verringerten Betonquerschnitt lediglich die Festigkeit von Beton und Bewehrungsstahl temperaturabhängig mit den Beiwerten Kc(θ) bzw. Ks(θ) abgemindert werden.
Zur Ermittlung der benötigten Querschnittstemperaturen können die zusammengestellten Diagramme mit Temperaturprofilen im EC 2-1-2 (Anhang A) verwendet werden. Diese Profile dürfen nur für Wände, Platten, Balken und Stützen mit den üblichen Querschnittsformen bei Brandbeanspruchung nach der Einheitstemperaturzeitkurve angewendet werden.
Nachdem die reduzierten Betonquerschnitte und die temperaturabhängigen Abminderungen der Betonfestigkeit bestimmt wurden, stehen nach EC 2-1-2 Anhang B zwei Verfahren zur Bemessung zur Verfügung.
- Zum einen gibt es die Zonenmethode (nach EC 2-1-2 Anhang B.2), die für Druckglieder im nationalen Anwendungsdokument nur mit zusätzlichen Ausnahmen nach Cylok und Achenbach geführt werden darf.
Hinweis :
|
- Zum anderen gibt es die sogenannte 500 °C- Isothermen-Methode im Anhang B.1, die nach nationalem Anhang für die Anwendung in Deutschland nicht zugelassen ist.
Achtung :
|
Varianten des vereinfachten Verfahrens
Temperaturprofile (aus Anhang A des EC 2-1-2)
Zonenmethode nach DIN EN 1992-1-2
Isothermen-Methode nach DIN EN 1992-1-2
Erweiterte Zonenmethode nach Cyllok und Aschenbach
Stufe 3: allgemeine Verfahren
Bei dem allgemeinen Rechenverfahren wird über eine rechnerische Simulation das Trag- und Verformungsverhalten brandbeanspruchter Einzelbauteile, Teil- oder Gesamttragwerke mit beliebigen Querschnittsformen, bei voller oder lokaler Temperaturbeanspruchung, ermittelt. Es erfordert, im Vergleich zum tabellarischen Nachweis oder zum vereinfachten Rechenverfahren, einen größeren Aufwand in der Berechnung. Außerdem ist die Prüfbarkeit der Ergebnisse nur mit einer Gegenrechnungen zu kontrollieren.
Insbesondere für eine statisch unbestimmte Konstruktion, bei denen das Verhalten des Gesamtsystems nicht durch Versuche am Teilsystem bestimmt werden kann, ist die numerische Modellierung und rechnerische Nachweisführung praktisch die einzige Möglichkeit, die Feuerwiderstandsdauer des Tragwerks zu bestimmen. Gerade wegen des Anspruchs der Allgemeingültigkeit und die Korrektheit müssen die allgemeinen Rechtsverfahren kritisch überprüft werden.[12]
Neben einer möglichen Inkorrektheit des Programms, können Eingabedaten problemspezifisch nicht richtig oder nicht sinnvoll für zutreffende Bemessungsereignisse eingegeben werden. Sofern als Rechengrundlage nicht die richtigen Materialgesetze oder Brandbeanspruchung im Programmcode fest hinterlegt sind, können ebenfalls gravierende Abweichungen entstehen.
Aus diesem Grund wurde im nationalen Anhang CC zur DIN EN 1991-1-2/NA [13] Validierungs- und Testbeispiele auf Basis eines Abschlussberichts[14]erstellt, mit denen die Überprüfung der Anwendbarkeit des Rechenprogramms, für die die brandschutztechnische Bemessung von Bauteilen und Tragwerken, möglich ist. Damit ist ein Rückschluss auf reale Tragwerke umsetzbar.
Für mehr Informationen zum Thema Validierung von Rechenprogrammen siehe:
[12]
[14]
[15]
[16]
Hinweis :
|
Die Berechnung erfolgt in zwei Schritten:
Der erste Schritt ist die thermische Analyse. Dabei werden die Temperaturverteilung und die Temperaturentwicklung innerhalb des betrachteten Bauteils mittels Finiten Elementen ermittelt. Somit ergeben sich zum einen die Brandgaszeittemperaturen, aus denen die Temperaturzeitkurve ermittelt wird. Zum anderen ergeben sich daraus die Isothermen, mit denen die Bauteiltemperaturen ermittelt werden können. Diese geben, im Gegensatz zu den Tabellen des Anhangs A in EC2-1-2, den Zustand des konkret vorliegenden Bauteils an. [17]
Weiterführende Informationen für die thermische Analyse sind hier zu finden.
Der zweite Schritt ist die mechanische Analyse. Dabei wird das Trag- und Verformungsverhalten unter Brandbeanspruchung untersucht. Das Ziel ist die Ermittlung der mechanischen Einwirkung Efi,d,t und der temperaturabhängigen Beanspruchbarkeit Rfi,d,t. Die Einwirkungen resultieren aus äußeren Belastungen, thermischen Einwirkungen wie Zwängungen aufgrund unterschiedlicher Erwärmung des Bauteils, und nichtlinearen Einflüssen aus der Berechnung nach Theorie II. Ordnung.
Der Nachweis wird auf Grundlage der ermittelten Informationen nach den üblichen Bedingungen der Kaltbemessung durchgeführt.
Grundsätzlich gilt auch hier: Ed,fi < Rd,fi [17]
Weiterführende Informationen für die mechanische Analyse sind hier zu finden.
Nebenwirkungen bei Brandbeanspruchung
Betonabplatzungen
Unter schnell ansteigenden Temperaturen steigt die Gefahr, dass Teile der äußeren Schichten eines Stahlbetonbauteils abplatzen. Das gebundene Wasser im Beton geht bei steigender Temperatur in den gasförmigen Zustand über und versucht aus dem Beton zu entweichen. Kann der Wasserdampf aufgrund von dichtem Betongefüge nicht schnell genug entweichen, beispielsweise bei hochfesten Betonen, erhöht sich die Wahrscheinligkeit von Betonabplatzungen. Die größte Gefahr tritt in den ersten 10 bis 30 Minuten auf, weil in diesem Zeitraum der größte Temperaturanstieg zu verzeichnen ist.
Bei Normalbeton ist die Wahrscheinlichkeit für Betonabplatzungen auf dünne Bauteile begrenzt. Für Betondeckungen über 60mm sollte Netzbewehrung eingelegt werden. Um das Abplatzen bei hochfestem Beton zu vermeiden, sollten dem Beton Fasern beigefügt werden. [18]
Betonabplatzung nach EC2-1-2 Abschnit 4.5
Einfluss der Dehnunen auf das statische System
Da die starken Dehnungen, sowohl des Betons als auch des Stahls, große Verformungen und Zwängungen verursachen, sind diese besonders zu berücksichtigen. Sie verstärken die Rissbildung in Zustand II. Außerdem ist eine realistische Erfassung der Verformungen bei Bauteilen notwendig, die nach Theorie II. Ordnung berechnet werden, wie zum Beispiel Stützen. Die Dehnungen und die daraus resultierenden Verformungen werden durch die Theorie II. Ordnung zusätzlich verstärkt, was zu großen Verschiebungen am System führt und damit auch zu hohen Schnittkräften.
Wenn man eine Pendelstütze unter Brandbeanspruchung beobachtet, versucht diese sich auszudehnen. Das führt bei Stützen zwischen zwei Geschossen zu einer Einspannung am Kopf und Fuß der Stütze, da sie sich in der Länge nicht frei bewegen kann. Diese Veränderung des Systems bewirkt eine neue Knicklänge von der halben Stützenlänge und sollte daher unbedingt in den Bemessungen einer solchen Pendelstütze berücksichtigt werden.
Unabhängig vom Bauteiltyp verursachen die Dehnungen bei nichtsymmetrischer Beflammung Spannungen innerhalb des Bauteils. Durch die unterschiedliche Erwärmung der Seiten behindern sich die Bereiche gegenseitig in der Ausdehnung, wodurch Kräfte freigesetzt werden. Bei Kragstützen führt das beispielsweise bei dreiseitiger Beanspruchung zu einer verstärkten Biegung.
Einspannung von Pendelstützen im Brandfall
Nach EC2-1-2 NA AA.4 darf die Einspannung im Brandfall bei Pendelstützen angesetzt werden. Die Einspannung ist als volle Einspannung anzusehen. Die Erleichterung gilt nur für Stahlbetonstützen in ausgesteiften Gebäuden.
Es wird zwischen Dachgeschossen und Zwischengeschossen unterschieden.
Für Zwischengeschosse (Regelgeschosse) gilt für die Knicklänge im Brandfall:
Für andere Geschosse, beispielsweise Dachgeschosse, gilt für die Knicklänge im Brandfall: . [19]
Berechnung von Stahlbetonbauteilen mit Softwarelösungen
Die plausiblen Eingaben der Parameter in die Berechnungsprogramme ist bei der Bemessung von Stahlbetonbauteilen entscheidend für das Ergebnis. Insbesondere bei der Heißbemessung haben kleine Änderungen große Auswirkungen auf beispielsweise die erforderliche Bewehrung.
Bei Stahlbetonstützen ist aufgrund des statischen Systems die Empfindlichkeit auf Ausmitten und Steifigkeiten generell sehr hoch. Bei der Heißbemessung von Stahlbetonstützen verstärkt sich der Effekt noch weiter. Durch die Reduzierung der Steifigkeiten und Druck- bzw Zugfestigkeiten von Beton und Stahl ergeben sich bei der Berechnung mittels Theorie II. Ordnung nochmal größere Verformungen. Diese erzeugen widerum größere Schnittkräfte, die von dem Material aufgenommen werden müssen. Nun hat zum Beispiel der Stahl in einer Stütze nicht überall die gleiche Temperatur und somit auch nicht die dieselbe Tragfähigkeit. Insofern ist die Anordnung der Bewehrung entscheidend für das Ergebnis der Berechnung. Doch insbesondere hier bieten Softwarelösungen meistens viele Varianten der Bewehrungsanordnung, die genau betrachtet werden müssen, um wirtschaftliche Ergebnisse zu erzielen.
Drei Einstellungsmöglichkeiten sollten bei einer Heißbemessung von Stahlbetonstützen immer überprüft werden:
Betondeckung
Die Betondeckung ist die Schutzschicht für den Bewehrungsstahl. Je höher die Betondeckung ist, desto geringer ist die Temperatur im Stahl und somit gewinnt das Material an Tragfähigkeit. Die Erhöhung der Betondeckung verschiebt die Bewehrung also ins Innere der Stütze, wobei die Temperatur stark abnimmt. Das kann schon bei geringen Veränderungen große Auswirkungen haben, da der Anstieg der Temperatur am Stützenrand extrem steil ist (siehe Bild).
Bewehrungswahl
- Bewehrung über den Umfang verteilen
- zusätzliche Bewehrung manuell mittig zum Randbereich der Stütze einlegen
- Die Bewehrung mehr in der Mitte der Stütze konzentrieren
Durch die starke Reduzierung der Lasten kann das Knicken in beide Richtungen maßgebend werden, sodass die eingelegte Eckbewehrung oder die einseitige Bewehrung die Belastung nicht mehr aufnehmen können. Außerdem nimmt die Temperatur zur Mitte der Stütze hin ab und die Festigkeit des Betonstahls wird weniger reduziert. Somit werden Bewehrungswahlen, die für die kalte Bemessung hilfreich sind, für die Heißbemessung ungünstig. Auf der sicheren Seite für die Heißbemessung ist immer eine umfangverteilte Bewehrung mit möglichst mittig liegenden Eisen. (Bild)
Statisches System
Eine Stütze verändert unter Brandbeanspruchung zum Teil sein statisches System. Zum einen lässt die Einspannung bei Pendelstützen eine Reduzierung der Knicklänge um 50% zu.
Zum anderen ist zu untersuchen, ob bei Kragstützen eine teilweise Einspannung am Stützenkopf möglich ist, beispielsweise durch Stahlbetonbinder bei großen Hallensystemen.
Diese Erleichterungen können bei der Bemessung auf jeden Fall berücksichtigt werden, müssen aber meistens manuell bei der Software ausgewählt bzw. angegeben werden.
(Bild mbaec auswahl, Bild Einspannung)
Quellenangaben
- ↑ [DIN EN 1991-1-2:2010-12]
- ↑ 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 [Betonkalender 2018: Bautenschutz Brandschutz, Teil 2]
- ↑ 3,0 3,1 3,2 3,3 3,4 3,5 [Dietmar Hosser, Jochen Zehfuß (Hrsg.): Brandschutz in Europa - Bemessung nach Eurocodes - 3., Überarbeitete und erweiterte Auflage 2017]
- ↑ 4,00 4,01 4,02 4,03 4,04 4,05 4,06 4,07 4,08 4,09 4,10 4,11 [Dr.-Ing. Rüdiger Müller / Dipl.-Ing. Josef Zirnbauer; Grundlagen der Heißbemessung von Stahlbetonbauteilen auf der Basis des EC2]
- ↑ [Dr.Ing. Josef Kretz, mb-news 1/2016; Heißbemessung von Stahlbetonstützen nach EC 2 Teil 1-2 und Nationalem Anhang (NA), 2016]
- ↑ [1]
- ↑ [2]
- ↑ [Workshop EC3 Rechenbeispiele, Brandschutznachweise; Prof.Dr.-Ing. Martin Mensinger; Dipl.-Ing.(FH) Martin Stadler, 2008]
- ↑ 9,0 9,1 9,2 9,3 9,4 9,5 9,6 [DIN EN 1992-1-2:2010-12]
- ↑ 10,0 10,1 DIN EN 1992-1-2: 2010-12, mit DIN EN 1992-1-2/NA: 2015-09
- ↑ DIN EN 1992-1-2/NA: 2010-12
- ↑ 12,0 12,1 Dietmar Hosser: Brandschutz in Europa - Bemessung nach Eurocodes; 2., vollständig überarbeitete und erweiterte Auflage 2012, Beuth Verlag GmbH
- ↑ 13,0 13,1 DIN EN 1991-1-2/NA:2015-09
- ↑ 14,0 14,1 Hosser, D., Richter, E., Zehfuß, J.: Erarbeitung von Nationalen Anwendungsrichtlinien für rechnerische Nachweise nach den Brandschutzteilen der Eurocodes 2 – 5. Abschlussbericht im Auftrag des Bundesministeriums für Raumordnung, Bauwesen und Städtebau (Az. RS III 4 – 67 41 – 97.120). Institut für Baustoffe, Massivbau und Brandschutz (iBMB), Technische Universität Braunschweig,Braunschweig 1999.
- ↑ Zehfuß, J.: Anforderungen an Rechenprogramme für allgemeine Rechenverfahren nach Eurocode. vfdb-Jahresfachtagung 2012, 21. bis 23.05.2012 in Köln, Tagungsband, 2012.
- ↑ Zehfuß, J., Richter, E.: Bewertungskriterien für rechnerische Brandschutznachweise nach den Eurocodes. Braunschweiger Brandschutztage ´99, 8. Fachseminar Brandschutz – Forschung und Praxis. 04. und 05. Oktober 1999 in Braunschweig. Institut für Baustoffe, Massivbau und Brandschutz (iBMB), Technische Universität Braunschweig, Heft 145, Braunschweig 1999.
- ↑ 17,0 17,1 Joachim Kretz: Heißbemessung von Stahlbetonstützen nach EC2 Teil 1-2 und Nationalem Anhang (NA), mb-news 1/2016, mbAEC
- ↑ Dipl.-Ing- J. Zirnbauer, Dr.-Ing. R. Müller; Grundlagen der Heißbemessung von Stahlbetonbauteilen auf Basis des EC2; München 2007
- ↑ Dietmar Hosser, Jochen Zehfuß: Brandschutz in Europa - Bemessung nach Eurocodes; 2., vollständig überarbeitete und erweiterte Auflage 2017, Beuth Verlag GmbH