Lasten im Brandfall (Bsp.): Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
| Zeile 30: | Zeile 30: | ||
::<math>{{E}_{d,fi}}=\sum {{\gamma }_{GA}}\cdot {{G}_{k}}+{{\psi }_{1,1}}\cdot {{Q}_{k,1}}+\sum {{\psi }_{2,i}}\cdot {{Q}_{k,l}}+\sum {{A}_{d}}</math> | ::<math>{{E}_{d,fi}}=\sum {{\gamma }_{GA}}\cdot {{G}_{k}}+{{\psi }_{1,1}}\cdot {{Q}_{k,1}}+\sum {{\psi }_{2,i}}\cdot {{Q}_{k,l}}+\sum {{A}_{d}}</math> | ||
| − | + | ||
:::{| | :::{| | ||
| γ<sub>GA</sub> = 1,0... || Teilsicherheitsbeiwert (für ständige Einwirkungen) nach DIN EN 1990<ref name="EC0">[DIN EN 1990:2021-10]</ref> | | γ<sub>GA</sub> = 1,0... || Teilsicherheitsbeiwert (für ständige Einwirkungen) nach DIN EN 1990<ref name="EC0">[DIN EN 1990:2021-10]</ref> | ||
| Zeile 36: | Zeile 36: | ||
| ψ<sub>1,1</sub> = ψ<sub>2,1</sub> = 0,3... || Kombinationsfaktor, nach der DIN EN 1991-1-2 NA darf ψ2,1 anstelle von ψ1,1 verwendet werden. Dieser ergibt sich nach DIN EN 1990:2021-10 für Bürogebäude zu 0,3.<ref name="Brandschutz EU" /><ref name="EC0" /> | | ψ<sub>1,1</sub> = ψ<sub>2,1</sub> = 0,3... || Kombinationsfaktor, nach der DIN EN 1991-1-2 NA darf ψ2,1 anstelle von ψ1,1 verwendet werden. Dieser ergibt sich nach DIN EN 1990:2021-10 für Bürogebäude zu 0,3.<ref name="Brandschutz EU" /><ref name="EC0" /> | ||
|} | |} | ||
| − | + | ||
::<math>{{E}_{d,fi}}=1,0\cdot 1050+0,3\cdot 273=1131,90kN</math> | ::<math>{{E}_{d,fi}}=1,0\cdot 1050+0,3\cdot 273=1131,90kN</math> | ||
Version vom 16. Juli 2023, 14:52 Uhr
Im folgenden werden vier mögliche Verfahren gezeigt, mit denen die konstante Bemessungsgröße für den Brandfall Ed,fi bestimmt werden kann.
Aufgabenstellung:
Gegeben sind:
- Bauteilklasse: Bürohaus (Kategorie B)
- Einwirkungen aus der "kalten" Lastannahme:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{G}_{Ek}}=1050kN\text{ (aus Eigenlast)}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{Q}_{Ek}}=273kN\text{ (aus Nutzlast)}}
Gesucht wird:
- Die konstante Bemessungsgröße für den Brandfall Ed,fi
Hinweis :
|
Berechnungsmethoden
- a.) Berechnung nach den allgemeinen Regeln.[1]
- b.) Berechnung nach dem vereinfachten Verfahren, mit dem vereinfachten Reduktionsfaktor η = 0,7.[2]
- c.) Berechnung nach dem vereinfachten Verfahren, mit dem Reduktionsfaktor nach der Formel 2.5 des EC 2-1-2.[3]
- d.) Berechnung nach dem vereinfachten Verfahren, mit dem Reduktionsfaktor nach den Formel 2.5a und 2.5b des EC 2-1-2.[3]
Berechnungen
a.) Berechnung nach den allgemeinen Regeln[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=\sum {{\gamma }_{GA}}\cdot {{G}_{k}}+{{\psi }_{1,1}}\cdot {{Q}_{k,1}}+\sum {{\psi }_{2,i}}\cdot {{Q}_{k,l}}+\sum {{A}_{d}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=1,0\cdot 1050+0,3\cdot 273=1131,90kN}
b.) Berechnung nach dem vereinfachten Verfahren, mit dem vereinfachten Reduktionsfaktor η = 0,7[2]
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\eta }_{fi}}=0,7} | Zur Vereinfachung und auf der sicheren Seite liegend darf der Reduktionsfaktor ηfi nach DIN EN 1991-1-2 mit 0,7 angenommen werden[2] |
c.) Berechnung nach dem vereinfachten Verfahren, mit dem Reduktionsfaktor nach der Formel 2.5 des EC 2-1-2.[3]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}={{\eta }_{fi}}\cdot {{E}_{d}}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=\frac{{{G}_{k}}+{{\psi }_{fi}}\cdot {{Q}_{k,1}}}{{{\gamma }_{G}}\cdot {{G}_{k}}+{{\gamma }_{Q,1}}\cdot {{Q}_{k,1}}}\cdot \left( {{\gamma }_{G}}\cdot {{G}_{k}}+{{\gamma }_{Q}}\cdot {{Q}_{k}} \right)}
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\gamma }_{G}}=1,35} | Teilsicherheitsbeiwert (für ständige Einwirkungen) nach der DIN EN 1990[4] |
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\gamma }_{Q,1}}=1,5} | Teilsicherheitsbeiwert für die dominierende veränderliche Einwirkung nach der DIN EN 1990[4] |
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=\frac{1050+0,3+273}{1,35\cdot 1050+1,5\cdot 273}\cdot \left( 1,35\cdot 1050+1,5\cdot 273 \right)}
d.) Berechnung nach dem vereinfachten Verfahren, mit dem Reduktionsfaktor nach den Formel 2.5a und 2.5b des EC 2-1-2.[3]
- Nach der Formel 2.5a des EC 2-1-2[3]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}={{\eta }_{fi}}\cdot {{E}_{d}}=\frac{{{G}_{k}}+{{\psi }_{fi}}\cdot {{Q}_{k,1}}}{{{\gamma }_{G}}\cdot {{G}_{k}}\cdot {{\gamma }_{Q,1}}\cdot {{\psi }_{0,1}}\cdot {{Q}_{k,1}}}\cdot {{E}_{d}}}
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{\psi }_{0,1}}} | Kombinationsbeiwert für die veränderliche Einwirkung nach DIN EN 1990[4] |
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=\frac{1050+0,3\cdot 273}{1,35\cdot 1050+1,5\cdot 0,7\cdot 273}\cdot 1827}
- Nach der Formel 2.5b des EC 2-1-2[3]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}={{\eta }_{fi}}\cdot {{E}_{d}}=\frac{{{G}_{k}}+{{\psi }_{fi}}\cdot {{Q}_{k,1}}}{\xi \cdot {{\gamma }_{G}}\cdot {{G}_{k}}\cdot {{\gamma }_{Q,1}}\cdot {{Q}_{k,1}}}\cdot {{E}_{d}}}
| Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\xi }} < | Reduktionsfaktor für ungünstig wirkende ständige Einwirkungen G. Für die Anwendung im Hochbau nach Anhang A1 des EC 1990 mit 0,85[4] |
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=\frac{1050+0,3\cdot 273}{0,85\cdot 1,35\cdot 1050+1,5\cdot 273}\cdot 1827}
- Ergebnis d.)
- Es wird das kleinere Ergebnis gewählt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=1213,49kN}
Ergebnis
Zusammenstellung: Je nach Wahl des Berechnungsansatzes ergeben sich unterschiedlich große Bemessungslasten für den Brandfall:
- a.) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=1131,90kN}
- b.) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=1278,90kN}
- c.)
- d.) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{E}_{d,fi}}=1213,49kN}
Quellen
Seiteninfo
|