b e f f = ∑ b e f f , i + b {\displaystyle b_{eff}=\sum b_{eff,i}+b}
b e f f , i = 0 , 2 ⋅ b i + 0 , 1 ⋅ l 0 { ≤ 0 , 2 ⋅ l 0 ≤ b i {\displaystyle b_{eff,i}=0,2\cdot b_{i}+0,1\cdot l_{0}{\begin{cases}\leq 0,2\cdot l_{0}\\\leq b_{i}\end{cases}}}
b e f f , 1 = 2 ⋅ 0 , 7925 + 0 , 30 = 1 , 885 m _ _ {\displaystyle b_{eff,1}=2\cdot 0,7925+0,30={\underline {\underline {1,885m}}}}
b e f f , i = 0 , 2 ⋅ 1 , 20 + 0 , 1 ⋅ ( 0 , 15 ⋅ 13 ) = 0 , 435 { ≤ 0 , 2 ⋅ ( 0 , 15 ⋅ 13 ) = 0 , 39 _ _ ≤ 1 , 20 {\displaystyle b_{eff,i}=0,2\cdot 1,20+0,1\cdot (0,15\cdot 13)=0,435{\begin{cases}\leq 0,2\cdot (0,15\cdot 13)={\underline {\underline {0,39}}}\\\leq 1,20\end{cases}}}
b e f f , 1 = 2 ⋅ 0 , 39 + 0 , 30 = 1 , 08 m _ _ {\displaystyle b_{eff,1}=2\cdot 0,39+0,30={\underline {\underline {1,08m}}}}
MB-Ausdruck: