Verankerung außerhalb von Auflagern (Bsp.)
In diesem Berechnungsbeispiel ist die Verankerungslänge der Zugbewehrung außerhalb von Auflagern nachzuweisen. Allgemeine Regeln zur Verankerungslänge und spezielle Hinweise für die Verankerung außerhalb von Auflagern werden auf einer gesonderten Seite dargestellt.
Aufgabenstellung
Im Rahmen der Zugkraftdeckung wird die Feldbewehrung von 7 Ø 20 auf 5 Ø 20 abgestuft. Hierfür ist die nötige Verankerungslänge zu bestimmen.
Folgende Daten sind gegeben:
- Beton: C30/37
- Betonstabstahl: B500B
Lösung
Verbundfestigkeit
Bewehrung unten → guter Verbund
→ C30/37 → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{bd} = 3,04 N/mm^2 = 0,304 kN/cm^2}
Erforderliche und vorhandene Bewehrung
Die Abstufung erfolgt von 7 Ø 20 auf 5 Ø 20.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,vorh} = 7 \O 20}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s,erf} = 5 \O 20}
Stahlspannung
Da in diesem Beispiel nur Stäbe mit gleichem Durchmesser verwendet werden, kann statt dem Verhältnis von erforderlicher zu vorhandener Bewehrungsquerschnittsfläche auch mit dem von erforderlicher und vorhandener Stabanzahl gerechnet werden.
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\sigma }_{sd}=f_{yd}\cdot {\frac {A_{s,erf}}{A_{s,vorh}}}=43,5kN/cm^{2}\cdot {\frac {5}{7}}=31,07kN/cm^{2}}
Grundwert der Verankerungslänge
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,rqd} = \frac{\O_s}{4} \cdot \frac{{\sigma}_{sd}}{f_{bd}} = \frac{2,0 cm}{4} \cdot \frac{31,07 kN/cm^2}{0,304 kN/cm^2} = 51,10 cm}
Ersatzverankerungslänge
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,eq} = {\alpha}_1 \cdot {\alpha}_4 \cdot {\alpha}_5 \cdot l_{b,rqd}}
Formgebung: Gerades Stabende → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\alpha}_1 = 1,0}
Angeschweißte Querstäbe: Keine →
Querdruck: Nicht vorhanden → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\alpha}_5 = 1,0}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,eq} = 1,0 \cdot 1,0 \cdot 1,0 \cdot 51,10 cm = \underline{\underline{51,10 cm}}}
Mindestwert der Verankerungslänge
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,min} = max\left\{ {\begin{matrix} 0,3 \cdot {\alpha}_1 \cdot {\alpha}_4 \cdot {\alpha}_5 \cdot \left( \frac{\O_s}{4} \cdot \frac{f_{yd}}{f_{bd}} \right) \\ 10 \cdot {\alpha}_5 \cdot \O_s \end{matrix}} \right\} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,min} = max\left\{ {\begin{matrix} 0,3 \cdot 1,0 \cdot 1,0 \cdot 1,0 \cdot \left( \frac{2,0 cm}{4} \cdot \frac{43,5 kN/cm^2}{0,304 kN/cm^2} \right) \\ 10 \cdot 1,0 \cdot 2,0 cm \end{matrix}} \right\} }
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle l_{b,min}=max\left\{{\begin{matrix}21,46cm\\20,00cm\end{matrix}}\right\}}
Die Mindestbewehrung ist nicht maßgebend.
Nachweis der Verankerungslänge
Gewählt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l_{b,vorh} = 55 cm}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{\underline{l_{b,vorh} = 55 cm \, \geq 51,10 cm = l_{b,eq}}}}
Einordnung in die Gesamtbemessung der Verankerungslänge
Dieses Beispiel berechnet die Verankerungslänge an einem Bereich des Systems. Zur umfassenden Bemessung muss die Verankerungslänge auch an anderen Stellen ermittelt werden, hierzu werden am Berechnungsbeispiel auch die Verankerungslänge am Endauflager, Zwischenauflager und am Kragarmende bestimmt.
Seiteninfo
|